MemoryManager.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. #include <Kernel/VM/PurgeableVMObject.h>
  13. //#define MM_DEBUG
  14. //#define PAGE_FAULT_DEBUG
  15. static MemoryManager* s_the;
  16. MemoryManager& MM
  17. {
  18. return *s_the;
  19. }
  20. MemoryManager::MemoryManager()
  21. {
  22. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  23. parse_memory_map();
  24. x86_enable_pae();
  25. x86_enable_pge();
  26. x86_enable_smep();
  27. x86_enable_smap();
  28. x86_enable_nx();
  29. x86_enable_wp();
  30. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  31. setup_low_1mb();
  32. protect_kernel_image();
  33. }
  34. MemoryManager::~MemoryManager()
  35. {
  36. }
  37. void MemoryManager::protect_kernel_image()
  38. {
  39. // Disable writing to the kernel text and rodata segments.
  40. extern u32 start_of_kernel_text;
  41. extern u32 start_of_kernel_data;
  42. for (size_t i = (u32)&start_of_kernel_text; i < (u32)&start_of_kernel_data; i += PAGE_SIZE) {
  43. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  44. pte.set_writable(false);
  45. }
  46. if (g_cpu_supports_nx) {
  47. // Disable execution of the kernel data and bss segments.
  48. extern u32 end_of_kernel_bss;
  49. for (size_t i = (u32)&start_of_kernel_data; i < (u32)&end_of_kernel_bss; i += PAGE_SIZE) {
  50. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  51. pte.set_execute_disabled(true);
  52. }
  53. }
  54. }
  55. void MemoryManager::setup_low_1mb()
  56. {
  57. m_low_page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  58. auto* pd_zero = quickmap_pd(kernel_page_directory(), 0);
  59. pd_zero[1].set_present(false);
  60. pd_zero[2].set_present(false);
  61. pd_zero[3].set_present(false);
  62. auto& pde_zero = pd_zero[0];
  63. pde_zero.set_page_table_base(m_low_page_table->paddr().get());
  64. pde_zero.set_present(true);
  65. pde_zero.set_huge(false);
  66. pde_zero.set_writable(true);
  67. pde_zero.set_user_allowed(false);
  68. if (g_cpu_supports_nx)
  69. pde_zero.set_execute_disabled(true);
  70. for (u32 offset = 0; offset < (2 * MB); offset += PAGE_SIZE) {
  71. auto& page_table_page = m_low_page_table;
  72. auto& pte = quickmap_pt(page_table_page->paddr())[offset / PAGE_SIZE];
  73. pte.set_physical_page_base(offset);
  74. pte.set_user_allowed(false);
  75. pte.set_present(offset != 0);
  76. pte.set_writable(offset < (1 * MB));
  77. }
  78. }
  79. void MemoryManager::parse_memory_map()
  80. {
  81. RefPtr<PhysicalRegion> region;
  82. bool region_is_super = false;
  83. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  84. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  85. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  86. (u32)(mmap->addr >> 32),
  87. (u32)(mmap->addr & 0xffffffff),
  88. (u32)(mmap->len >> 32),
  89. (u32)(mmap->len & 0xffffffff),
  90. (u32)mmap->type);
  91. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  92. continue;
  93. // FIXME: Maybe make use of stuff below the 1MB mark?
  94. if (mmap->addr < (1 * MB))
  95. continue;
  96. if ((mmap->addr + mmap->len) > 0xffffffff)
  97. continue;
  98. auto diff = (u32)mmap->addr % PAGE_SIZE;
  99. if (diff != 0) {
  100. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  101. diff = PAGE_SIZE - diff;
  102. mmap->addr += diff;
  103. mmap->len -= diff;
  104. }
  105. if ((mmap->len % PAGE_SIZE) != 0) {
  106. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  107. mmap->len -= mmap->len % PAGE_SIZE;
  108. }
  109. if (mmap->len < PAGE_SIZE) {
  110. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  111. continue;
  112. }
  113. #ifdef MM_DEBUG
  114. kprintf("MM: considering memory at %p - %p\n",
  115. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  116. #endif
  117. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  118. auto addr = PhysicalAddress(page_base);
  119. if (page_base < 7 * MB) {
  120. // nothing
  121. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  122. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  123. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  124. region = m_super_physical_regions.last();
  125. region_is_super = true;
  126. } else {
  127. region->expand(region->lower(), addr);
  128. }
  129. } else {
  130. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  131. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  132. region = m_user_physical_regions.last();
  133. region_is_super = false;
  134. } else {
  135. region->expand(region->lower(), addr);
  136. }
  137. }
  138. }
  139. }
  140. for (auto& region : m_super_physical_regions)
  141. m_super_physical_pages += region.finalize_capacity();
  142. for (auto& region : m_user_physical_regions)
  143. m_user_physical_pages += region.finalize_capacity();
  144. }
  145. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  146. {
  147. ASSERT_INTERRUPTS_DISABLED();
  148. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  149. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  150. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  151. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  152. PageDirectoryEntry& pde = pd[page_directory_index];
  153. if (!pde.is_present()) {
  154. #ifdef MM_DEBUG
  155. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  156. #endif
  157. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  158. #ifdef MM_DEBUG
  159. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  160. &page_directory,
  161. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  162. page_directory.cr3(),
  163. page_directory_index,
  164. vaddr.get(),
  165. page_table->paddr().get());
  166. #endif
  167. pde.set_page_table_base(page_table->paddr().get());
  168. pde.set_user_allowed(true);
  169. pde.set_present(true);
  170. pde.set_writable(true);
  171. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  172. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  173. }
  174. return quickmap_pt(PhysicalAddress((u32)pde.page_table_base()))[page_table_index];
  175. }
  176. void MemoryManager::initialize()
  177. {
  178. s_the = new MemoryManager;
  179. }
  180. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  181. {
  182. if (vaddr.get() < 0xc0000000)
  183. return nullptr;
  184. for (auto& region : MM.m_kernel_regions) {
  185. if (region.contains(vaddr))
  186. return &region;
  187. }
  188. return nullptr;
  189. }
  190. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  191. {
  192. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  193. for (auto& region : process.m_regions) {
  194. if (region.contains(vaddr))
  195. return &region;
  196. }
  197. dbg() << process << " Couldn't find user region for " << vaddr;
  198. if (auto* kreg = kernel_region_from_vaddr(vaddr)) {
  199. dbg() << process << " OTOH, there is a kernel region: " << kreg->range() << ": " << kreg->name();
  200. } else {
  201. dbg() << process << " AND no kernel region either";
  202. }
  203. process.dump_regions();
  204. kprintf("Kernel regions:\n");
  205. kprintf("BEGIN END SIZE ACCESS NAME\n");
  206. for (auto& region : MM.m_kernel_regions) {
  207. kprintf("%08x -- %08x %08x %c%c%c%c%c%c %s\n",
  208. region.vaddr().get(),
  209. region.vaddr().offset(region.size() - 1).get(),
  210. region.size(),
  211. region.is_readable() ? 'R' : ' ',
  212. region.is_writable() ? 'W' : ' ',
  213. region.is_executable() ? 'X' : ' ',
  214. region.is_shared() ? 'S' : ' ',
  215. region.is_stack() ? 'T' : ' ',
  216. region.vmobject().is_purgeable() ? 'P' : ' ',
  217. region.name().characters());
  218. }
  219. return nullptr;
  220. }
  221. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  222. {
  223. if (auto* region = kernel_region_from_vaddr(vaddr))
  224. return region;
  225. return user_region_from_vaddr(process, vaddr);
  226. }
  227. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  228. {
  229. if (auto* region = kernel_region_from_vaddr(vaddr))
  230. return region;
  231. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  232. }
  233. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  234. {
  235. if (auto* region = kernel_region_from_vaddr(vaddr))
  236. return region;
  237. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  238. if (!page_directory)
  239. return nullptr;
  240. ASSERT(page_directory->process());
  241. return user_region_from_vaddr(*page_directory->process(), vaddr);
  242. }
  243. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  244. {
  245. ASSERT_INTERRUPTS_DISABLED();
  246. ASSERT(current);
  247. #ifdef PAGE_FAULT_DEBUG
  248. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  249. #endif
  250. auto* region = region_from_vaddr(fault.vaddr());
  251. if (!region) {
  252. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  253. return PageFaultResponse::ShouldCrash;
  254. }
  255. return region->handle_fault(fault);
  256. }
  257. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  258. {
  259. InterruptDisabler disabler;
  260. ASSERT(!(size % PAGE_SIZE));
  261. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  262. ASSERT(range.is_valid());
  263. OwnPtr<Region> region;
  264. if (user_accessible)
  265. region = Region::create_user_accessible(range, name, access, cacheable);
  266. else
  267. region = Region::create_kernel_only(range, name, access, cacheable);
  268. region->set_page_directory(kernel_page_directory());
  269. // FIXME: It would be cool if these could zero-fill on demand instead.
  270. if (should_commit)
  271. region->commit();
  272. return region;
  273. }
  274. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  275. {
  276. InterruptDisabler disabler;
  277. ASSERT(!(size % PAGE_SIZE));
  278. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  279. ASSERT(range.is_valid());
  280. OwnPtr<Region> region;
  281. if (user_accessible)
  282. region = Region::create_user_accessible(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  283. else
  284. region = Region::create_kernel_only(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  285. region->map(kernel_page_directory());
  286. return region;
  287. }
  288. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  289. {
  290. return allocate_kernel_region(size, name, access, true, true, cacheable);
  291. }
  292. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  293. {
  294. InterruptDisabler disabler;
  295. ASSERT(!(size % PAGE_SIZE));
  296. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  297. ASSERT(range.is_valid());
  298. OwnPtr<Region> region;
  299. if (user_accessible)
  300. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  301. else
  302. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  303. region->map(kernel_page_directory());
  304. return region;
  305. }
  306. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  307. {
  308. for (auto& region : m_user_physical_regions) {
  309. if (!region.contains(page)) {
  310. kprintf(
  311. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  312. page.paddr().get(), region.lower().get(), region.upper().get());
  313. continue;
  314. }
  315. region.return_page(move(page));
  316. --m_user_physical_pages_used;
  317. return;
  318. }
  319. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  320. ASSERT_NOT_REACHED();
  321. }
  322. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  323. {
  324. RefPtr<PhysicalPage> page;
  325. for (auto& region : m_user_physical_regions) {
  326. page = region.take_free_page(false);
  327. if (!page.is_null())
  328. break;
  329. }
  330. return page;
  331. }
  332. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  333. {
  334. InterruptDisabler disabler;
  335. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  336. if (!page) {
  337. if (m_user_physical_regions.is_empty()) {
  338. kprintf("MM: no user physical regions available (?)\n");
  339. }
  340. for_each_vmobject([&](auto& vmobject) {
  341. if (vmobject.is_purgeable()) {
  342. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  343. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  344. if (purged_page_count) {
  345. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  346. page = find_free_user_physical_page();
  347. ASSERT(page);
  348. return IterationDecision::Break;
  349. }
  350. }
  351. return IterationDecision::Continue;
  352. });
  353. if (!page) {
  354. kprintf("MM: no user physical pages available\n");
  355. ASSERT_NOT_REACHED();
  356. return {};
  357. }
  358. }
  359. #ifdef MM_DEBUG
  360. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  361. #endif
  362. if (should_zero_fill == ShouldZeroFill::Yes) {
  363. auto* ptr = (u32*)quickmap_page(*page);
  364. memset(ptr, 0, PAGE_SIZE);
  365. unquickmap_page();
  366. }
  367. ++m_user_physical_pages_used;
  368. return page;
  369. }
  370. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  371. {
  372. for (auto& region : m_super_physical_regions) {
  373. if (!region.contains(page)) {
  374. kprintf(
  375. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  376. page.paddr().get(), region.lower().get(), region.upper().get());
  377. continue;
  378. }
  379. region.return_page(move(page));
  380. --m_super_physical_pages_used;
  381. return;
  382. }
  383. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  384. ASSERT_NOT_REACHED();
  385. }
  386. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  387. {
  388. InterruptDisabler disabler;
  389. RefPtr<PhysicalPage> page;
  390. for (auto& region : m_super_physical_regions) {
  391. page = region.take_free_page(true);
  392. if (page.is_null())
  393. continue;
  394. }
  395. if (!page) {
  396. if (m_super_physical_regions.is_empty()) {
  397. kprintf("MM: no super physical regions available (?)\n");
  398. }
  399. kprintf("MM: no super physical pages available\n");
  400. ASSERT_NOT_REACHED();
  401. return {};
  402. }
  403. #ifdef MM_DEBUG
  404. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  405. #endif
  406. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  407. ++m_super_physical_pages_used;
  408. return page;
  409. }
  410. void MemoryManager::enter_process_paging_scope(Process& process)
  411. {
  412. ASSERT(current);
  413. InterruptDisabler disabler;
  414. current->tss().cr3 = process.page_directory().cr3();
  415. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  416. : "memory");
  417. }
  418. void MemoryManager::flush_entire_tlb()
  419. {
  420. asm volatile(
  421. "mov %%cr3, %%eax\n"
  422. "mov %%eax, %%cr3\n" ::
  423. : "%eax", "memory");
  424. }
  425. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  426. {
  427. #ifdef MM_DEBUG
  428. dbgprintf("MM: Flush page V%p\n", vaddr.get());
  429. #endif
  430. asm volatile("invlpg %0"
  431. :
  432. : "m"(*(char*)vaddr.get())
  433. : "memory");
  434. }
  435. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  436. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  437. {
  438. auto& pte = boot_pd3_pde1023_pt[4];
  439. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  440. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  441. #ifdef MM_DEBUG
  442. dbgprintf("quickmap_pd: Mapping P%p at 0xffe04000 in pte @ %p\n", directory.m_directory_pages[pdpt_index]->paddr().as_ptr(), &pte);
  443. #endif
  444. pte.set_physical_page_base(pd_paddr.get());
  445. pte.set_present(true);
  446. pte.set_writable(true);
  447. pte.set_user_allowed(false);
  448. flush_tlb(VirtualAddress(0xffe04000));
  449. }
  450. return (PageDirectoryEntry*)0xffe04000;
  451. }
  452. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  453. {
  454. auto& pte = boot_pd3_pde1023_pt[8];
  455. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  456. #ifdef MM_DEBUG
  457. dbgprintf("quickmap_pt: Mapping P%p at 0xffe08000 in pte @ %p\n", pt_paddr.as_ptr(), &pte);
  458. #endif
  459. pte.set_physical_page_base(pt_paddr.get());
  460. pte.set_present(true);
  461. pte.set_writable(true);
  462. pte.set_user_allowed(false);
  463. flush_tlb(VirtualAddress(0xffe08000));
  464. }
  465. return (PageTableEntry*)0xffe08000;
  466. }
  467. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  468. {
  469. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  470. pte.set_physical_page_base(paddr.get());
  471. pte.set_present(true);
  472. pte.set_writable(true);
  473. pte.set_user_allowed(false);
  474. pte.set_cache_disabled(cache_disabled);
  475. flush_tlb(vaddr);
  476. }
  477. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  478. {
  479. ASSERT_INTERRUPTS_DISABLED();
  480. ASSERT(!m_quickmap_in_use);
  481. m_quickmap_in_use = true;
  482. auto& pte = boot_pd3_pde1023_pt[0];
  483. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  484. #ifdef MM_DEBUG
  485. dbgprintf("quickmap_page: Mapping P%p at 0xffe00000 in pte @ %p\n", physical_page.paddr().as_ptr(), &pte);
  486. #endif
  487. pte.set_physical_page_base(physical_page.paddr().get());
  488. pte.set_present(true);
  489. pte.set_writable(true);
  490. pte.set_user_allowed(false);
  491. flush_tlb(VirtualAddress(0xffe00000));
  492. }
  493. return (u8*)0xffe00000;
  494. }
  495. void MemoryManager::unquickmap_page()
  496. {
  497. ASSERT_INTERRUPTS_DISABLED();
  498. ASSERT(m_quickmap_in_use);
  499. auto& pte = boot_pd3_pde1023_pt[0];
  500. pte.set_physical_page_base(0);
  501. pte.set_present(false);
  502. flush_tlb(VirtualAddress(0xffe00000));
  503. m_quickmap_in_use = false;
  504. }
  505. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  506. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  507. {
  508. ASSERT(size);
  509. VirtualAddress vaddr = base_vaddr.page_base();
  510. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  511. if (end_vaddr < vaddr) {
  512. dbg() << *current << " Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  513. return false;
  514. }
  515. const Region* region = nullptr;
  516. while (vaddr <= end_vaddr) {
  517. if (!region || !region->contains(vaddr)) {
  518. if (space == AccessSpace::Kernel)
  519. region = kernel_region_from_vaddr(vaddr);
  520. if (!region || !region->contains(vaddr))
  521. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  522. if (!region
  523. || (space == AccessSpace::User && !region->is_user_accessible())
  524. || (access_type == AccessType::Read && !region->is_readable())
  525. || (access_type == AccessType::Write && !region->is_writable())) {
  526. return false;
  527. }
  528. }
  529. vaddr = vaddr.offset(PAGE_SIZE);
  530. }
  531. return true;
  532. }
  533. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  534. {
  535. if (!is_user_address(vaddr))
  536. return false;
  537. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  538. return region && region->is_user_accessible() && region->is_stack();
  539. }
  540. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  541. {
  542. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  543. }
  544. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  545. {
  546. if (!is_user_address(vaddr))
  547. return false;
  548. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  549. }
  550. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  551. {
  552. if (!is_user_address(vaddr))
  553. return false;
  554. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  555. }
  556. void MemoryManager::register_vmobject(VMObject& vmobject)
  557. {
  558. InterruptDisabler disabler;
  559. m_vmobjects.append(&vmobject);
  560. }
  561. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  562. {
  563. InterruptDisabler disabler;
  564. m_vmobjects.remove(&vmobject);
  565. }
  566. void MemoryManager::register_region(Region& region)
  567. {
  568. InterruptDisabler disabler;
  569. if (region.vaddr().get() >= 0xc0000000)
  570. m_kernel_regions.append(&region);
  571. else
  572. m_user_regions.append(&region);
  573. }
  574. void MemoryManager::unregister_region(Region& region)
  575. {
  576. InterruptDisabler disabler;
  577. if (region.vaddr().get() >= 0xc0000000)
  578. m_kernel_regions.remove(&region);
  579. else
  580. m_user_regions.remove(&region);
  581. }
  582. ProcessPagingScope::ProcessPagingScope(Process& process)
  583. {
  584. ASSERT(current);
  585. MM.enter_process_paging_scope(process);
  586. }
  587. ProcessPagingScope::~ProcessPagingScope()
  588. {
  589. MM.enter_process_paging_scope(current->process());
  590. }