AnonymousVMObject.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <Kernel/Arch/SmapDisabler.h>
  7. #include <Kernel/Arch/x86/SafeMem.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/Memory/AnonymousVMObject.h>
  10. #include <Kernel/Memory/MemoryManager.h>
  11. #include <Kernel/Memory/PhysicalPage.h>
  12. #include <Kernel/Process.h>
  13. namespace Kernel::Memory {
  14. ErrorOr<NonnullRefPtr<VMObject>> AnonymousVMObject::try_clone()
  15. {
  16. // We need to acquire our lock so we copy a sane state
  17. SpinlockLocker lock(m_lock);
  18. if (is_purgeable() && is_volatile()) {
  19. // If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
  20. // object, effectively "pre-purging" it in the child process.
  21. auto clone = TRY(try_create_purgeable_with_size(size(), AllocationStrategy::None));
  22. clone->m_volatile = true;
  23. return clone;
  24. }
  25. // We're the parent. Since we're about to become COW we need to
  26. // commit the number of pages that we need to potentially allocate
  27. // so that the parent is still guaranteed to be able to have all
  28. // non-volatile memory available.
  29. size_t new_cow_pages_needed = page_count();
  30. dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
  31. auto committed_pages = TRY(MM.commit_user_physical_pages(new_cow_pages_needed));
  32. // Create or replace the committed cow pages. When cloning a previously
  33. // cloned vmobject, we want to essentially "fork", leaving us and the
  34. // new clone with one set of shared committed cow pages, and the original
  35. // one would keep the one it still has. This ensures that the original
  36. // one and this one, as well as the clone have sufficient resources
  37. // to cow all pages as needed
  38. auto new_shared_committed_cow_pages = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) SharedCommittedCowPages(move(committed_pages))));
  39. auto new_physical_pages = TRY(this->try_clone_physical_pages());
  40. auto clone = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(*this, *new_shared_committed_cow_pages, move(new_physical_pages))));
  41. m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);
  42. // Both original and clone become COW. So create a COW map for ourselves
  43. // or reset all pages to be copied again if we were previously cloned
  44. ensure_or_reset_cow_map();
  45. if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
  46. // The parent vmobject didn't use up all committed pages. When
  47. // cloning (fork) we will overcommit. For this purpose we drop all
  48. // lazy-commit references and replace them with shared zero pages.
  49. for (size_t i = 0; i < page_count(); i++) {
  50. auto& page = clone->m_physical_pages[i];
  51. if (page && page->is_lazy_committed_page()) {
  52. page = MM.shared_zero_page();
  53. }
  54. }
  55. }
  56. return clone;
  57. }
  58. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
  59. {
  60. Optional<CommittedPhysicalPageSet> committed_pages;
  61. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  62. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  63. }
  64. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  65. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages), strategy, move(committed_pages)));
  66. }
  67. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
  68. {
  69. auto contiguous_physical_pages = TRY(MM.allocate_contiguous_user_physical_pages(size));
  70. auto new_physical_pages = TRY(FixedArray<RefPtr<PhysicalPage>>::try_create(contiguous_physical_pages.span()));
  71. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages)));
  72. }
  73. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
  74. {
  75. Optional<CommittedPhysicalPageSet> committed_pages;
  76. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  77. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  78. }
  79. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  80. auto vmobject = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages), strategy, move(committed_pages))));
  81. vmobject->m_purgeable = true;
  82. return vmobject;
  83. }
  84. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
  85. {
  86. auto new_physical_pages = TRY(FixedArray<RefPtr<PhysicalPage>>::try_create(physical_pages));
  87. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages)));
  88. }
  89. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
  90. {
  91. if (paddr.offset(size) < paddr) {
  92. dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
  93. // Since we can't wrap around yet, let's pretend to OOM.
  94. return ENOMEM;
  95. }
  96. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  97. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(paddr, move(new_physical_pages)));
  98. }
  99. AnonymousVMObject::AnonymousVMObject(FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
  100. : VMObject(move(new_physical_pages))
  101. , m_unused_committed_pages(move(committed_pages))
  102. {
  103. if (strategy == AllocationStrategy::AllocateNow) {
  104. // Allocate all pages right now. We know we can get all because we committed the amount needed
  105. for (size_t i = 0; i < page_count(); ++i)
  106. physical_pages()[i] = m_unused_committed_pages->take_one();
  107. } else {
  108. auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
  109. for (size_t i = 0; i < page_count(); ++i)
  110. physical_pages()[i] = initial_page;
  111. }
  112. }
  113. AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  114. : VMObject(move(new_physical_pages))
  115. {
  116. VERIFY(paddr.page_base() == paddr);
  117. for (size_t i = 0; i < page_count(); ++i)
  118. physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
  119. }
  120. AnonymousVMObject::AnonymousVMObject(FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  121. : VMObject(move(new_physical_pages))
  122. {
  123. }
  124. AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages, FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  125. : VMObject(move(new_physical_pages))
  126. , m_shared_committed_cow_pages(move(shared_committed_cow_pages))
  127. , m_purgeable(other.m_purgeable)
  128. {
  129. ensure_cow_map();
  130. }
  131. AnonymousVMObject::~AnonymousVMObject()
  132. {
  133. }
  134. size_t AnonymousVMObject::purge()
  135. {
  136. SpinlockLocker lock(m_lock);
  137. if (!is_purgeable() || !is_volatile())
  138. return 0;
  139. size_t total_pages_purged = 0;
  140. for (auto& page : m_physical_pages) {
  141. VERIFY(page);
  142. if (page->is_shared_zero_page())
  143. continue;
  144. page = MM.shared_zero_page();
  145. ++total_pages_purged;
  146. }
  147. m_was_purged = true;
  148. for_each_region([](Region& region) {
  149. region.remap();
  150. });
  151. return total_pages_purged;
  152. }
  153. ErrorOr<void> AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
  154. {
  155. VERIFY(is_purgeable());
  156. SpinlockLocker locker(m_lock);
  157. was_purged = m_was_purged;
  158. if (m_volatile == is_volatile)
  159. return {};
  160. if (is_volatile) {
  161. // When a VMObject is made volatile, it gives up all of its committed memory.
  162. // Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
  163. for (auto& page : m_physical_pages) {
  164. if (page && page->is_lazy_committed_page())
  165. page = MM.shared_zero_page();
  166. }
  167. m_unused_committed_pages = {};
  168. m_shared_committed_cow_pages = nullptr;
  169. if (!m_cow_map.is_null())
  170. m_cow_map = {};
  171. m_volatile = true;
  172. m_was_purged = false;
  173. for_each_region([&](auto& region) { region.remap(); });
  174. return {};
  175. }
  176. // When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
  177. // If that fails, we return false to indicate that memory allocation failed.
  178. size_t committed_pages_needed = 0;
  179. for (auto& page : m_physical_pages) {
  180. VERIFY(page);
  181. if (page->is_shared_zero_page())
  182. ++committed_pages_needed;
  183. }
  184. if (!committed_pages_needed) {
  185. m_volatile = false;
  186. return {};
  187. }
  188. m_unused_committed_pages = TRY(MM.commit_user_physical_pages(committed_pages_needed));
  189. for (auto& page : m_physical_pages) {
  190. if (page->is_shared_zero_page())
  191. page = MM.lazy_committed_page();
  192. }
  193. m_volatile = false;
  194. m_was_purged = false;
  195. for_each_region([&](auto& region) { region.remap(); });
  196. return {};
  197. }
  198. NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
  199. {
  200. return m_unused_committed_pages->take_one();
  201. }
  202. Bitmap& AnonymousVMObject::ensure_cow_map()
  203. {
  204. if (m_cow_map.is_null())
  205. m_cow_map = Bitmap { page_count(), true };
  206. return m_cow_map;
  207. }
  208. void AnonymousVMObject::ensure_or_reset_cow_map()
  209. {
  210. if (m_cow_map.is_null())
  211. ensure_cow_map();
  212. else
  213. m_cow_map.fill(true);
  214. }
  215. bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
  216. {
  217. auto const& page = physical_pages()[page_index];
  218. if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
  219. return true;
  220. if (is_shared)
  221. return false;
  222. return !m_cow_map.is_null() && m_cow_map.get(page_index);
  223. }
  224. void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
  225. {
  226. ensure_cow_map().set(page_index, cow);
  227. }
  228. size_t AnonymousVMObject::cow_pages() const
  229. {
  230. if (m_cow_map.is_null())
  231. return 0;
  232. return m_cow_map.count_slow(true);
  233. }
  234. PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
  235. {
  236. VERIFY_INTERRUPTS_DISABLED();
  237. SpinlockLocker lock(m_lock);
  238. if (is_volatile()) {
  239. // A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
  240. dbgln("COW fault in volatile region, will crash.");
  241. return PageFaultResponse::ShouldCrash;
  242. }
  243. auto& page_slot = physical_pages()[page_index];
  244. // If we were sharing committed COW pages with another process, and the other process
  245. // has exhausted the supply, we can stop counting the shared pages.
  246. if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
  247. m_shared_committed_cow_pages = nullptr;
  248. if (page_slot->ref_count() == 1) {
  249. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
  250. set_should_cow(page_index, false);
  251. if (m_shared_committed_cow_pages) {
  252. m_shared_committed_cow_pages->uncommit_one();
  253. if (m_shared_committed_cow_pages->is_empty())
  254. m_shared_committed_cow_pages = nullptr;
  255. }
  256. return PageFaultResponse::Continue;
  257. }
  258. RefPtr<PhysicalPage> page;
  259. if (m_shared_committed_cow_pages) {
  260. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!");
  261. page = m_shared_committed_cow_pages->take_one();
  262. } else {
  263. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!");
  264. auto page_or_error = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  265. if (page_or_error.is_error()) {
  266. dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
  267. return PageFaultResponse::OutOfMemory;
  268. }
  269. page = page_or_error.release_value();
  270. }
  271. dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
  272. {
  273. SpinlockLocker mm_locker(s_mm_lock);
  274. u8* dest_ptr = MM.quickmap_page(*page);
  275. SmapDisabler disabler;
  276. void* fault_at;
  277. if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
  278. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  279. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
  280. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  281. else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
  282. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
  283. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  284. else
  285. VERIFY_NOT_REACHED();
  286. }
  287. MM.unquickmap_page();
  288. }
  289. page_slot = move(page);
  290. set_should_cow(page_index, false);
  291. return PageFaultResponse::Continue;
  292. }
  293. AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
  294. : m_committed_pages(move(committed_pages))
  295. {
  296. }
  297. AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages()
  298. {
  299. }
  300. NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
  301. {
  302. SpinlockLocker locker(m_lock);
  303. return m_committed_pages.take_one();
  304. }
  305. void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
  306. {
  307. SpinlockLocker locker(m_lock);
  308. m_committed_pages.uncommit_one();
  309. }
  310. }