MathObject.cpp 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Interpreter.h>
  30. #include <LibJS/Runtime/GlobalObject.h>
  31. #include <LibJS/Runtime/MathObject.h>
  32. #include <math.h>
  33. namespace JS {
  34. MathObject::MathObject(GlobalObject& global_object)
  35. : Object(global_object.object_prototype())
  36. {
  37. }
  38. void MathObject::initialize(Interpreter& interpreter, GlobalObject& global_object)
  39. {
  40. Object::initialize(interpreter, global_object);
  41. u8 attr = Attribute::Writable | Attribute::Configurable;
  42. define_native_function("abs", abs, 1, attr);
  43. define_native_function("random", random, 0, attr);
  44. define_native_function("sqrt", sqrt, 1, attr);
  45. define_native_function("floor", floor, 1, attr);
  46. define_native_function("ceil", ceil, 1, attr);
  47. define_native_function("round", round, 1, attr);
  48. define_native_function("max", max, 2, attr);
  49. define_native_function("min", min, 2, attr);
  50. define_native_function("trunc", trunc, 1, attr);
  51. define_native_function("sin", sin, 1, attr);
  52. define_native_function("cos", cos, 1, attr);
  53. define_native_function("tan", tan, 1, attr);
  54. define_native_function("pow", pow, 2, attr);
  55. define_native_function("exp", exp, 1, attr);
  56. define_native_function("expm1", expm1, 1, attr);
  57. define_native_function("sign", sign, 1, attr);
  58. define_native_function("clz32", clz32, 1, attr);
  59. define_property("E", Value(M_E), 0);
  60. define_property("LN2", Value(M_LN2), 0);
  61. define_property("LN10", Value(M_LN10), 0);
  62. define_property("LOG2E", Value(log2(M_E)), 0);
  63. define_property("LOG10E", Value(log10(M_E)), 0);
  64. define_property("PI", Value(M_PI), 0);
  65. define_property("SQRT1_2", Value(M_SQRT1_2), 0);
  66. define_property("SQRT2", Value(M_SQRT2), 0);
  67. }
  68. MathObject::~MathObject()
  69. {
  70. }
  71. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  72. {
  73. auto number = interpreter.argument(0).to_number(interpreter);
  74. if (interpreter.exception())
  75. return {};
  76. if (number.is_nan())
  77. return js_nan();
  78. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  79. }
  80. Value MathObject::random(Interpreter&, GlobalObject&)
  81. {
  82. #ifdef __serenity__
  83. double r = (double)arc4random() / (double)UINT32_MAX;
  84. #else
  85. double r = (double)rand() / (double)RAND_MAX;
  86. #endif
  87. return Value(r);
  88. }
  89. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  90. {
  91. auto number = interpreter.argument(0).to_number(interpreter);
  92. if (interpreter.exception())
  93. return {};
  94. if (number.is_nan())
  95. return js_nan();
  96. return Value(::sqrt(number.as_double()));
  97. }
  98. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  99. {
  100. auto number = interpreter.argument(0).to_number(interpreter);
  101. if (interpreter.exception())
  102. return {};
  103. if (number.is_nan())
  104. return js_nan();
  105. return Value(::floor(number.as_double()));
  106. }
  107. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  108. {
  109. auto number = interpreter.argument(0).to_number(interpreter);
  110. if (interpreter.exception())
  111. return {};
  112. if (number.is_nan())
  113. return js_nan();
  114. return Value(::ceil(number.as_double()));
  115. }
  116. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  117. {
  118. auto number = interpreter.argument(0).to_number(interpreter);
  119. if (interpreter.exception())
  120. return {};
  121. if (number.is_nan())
  122. return js_nan();
  123. return Value(::round(number.as_double()));
  124. }
  125. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  126. {
  127. if (!interpreter.argument_count())
  128. return js_negative_infinity();
  129. auto max = interpreter.argument(0).to_number(interpreter);
  130. if (interpreter.exception())
  131. return {};
  132. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  133. auto cur = interpreter.argument(i).to_number(interpreter);
  134. if (interpreter.exception())
  135. return {};
  136. max = Value(cur.as_double() > max.as_double() ? cur : max);
  137. }
  138. return max;
  139. }
  140. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  141. {
  142. if (!interpreter.argument_count())
  143. return js_infinity();
  144. auto min = interpreter.argument(0).to_number(interpreter);
  145. if (interpreter.exception())
  146. return {};
  147. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  148. auto cur = interpreter.argument(i).to_number(interpreter);
  149. if (interpreter.exception())
  150. return {};
  151. min = Value(cur.as_double() < min.as_double() ? cur : min);
  152. }
  153. return min;
  154. }
  155. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  156. {
  157. auto number = interpreter.argument(0).to_number(interpreter);
  158. if (interpreter.exception())
  159. return {};
  160. if (number.is_nan())
  161. return js_nan();
  162. if (number.as_double() < 0)
  163. return MathObject::ceil(interpreter, global_object);
  164. return MathObject::floor(interpreter, global_object);
  165. }
  166. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  167. {
  168. auto number = interpreter.argument(0).to_number(interpreter);
  169. if (interpreter.exception())
  170. return {};
  171. if (number.is_nan())
  172. return js_nan();
  173. return Value(::sin(number.as_double()));
  174. }
  175. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  176. {
  177. auto number = interpreter.argument(0).to_number(interpreter);
  178. if (interpreter.exception())
  179. return {};
  180. if (number.is_nan())
  181. return js_nan();
  182. return Value(::cos(number.as_double()));
  183. }
  184. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  185. {
  186. auto number = interpreter.argument(0).to_number(interpreter);
  187. if (interpreter.exception())
  188. return {};
  189. if (number.is_nan())
  190. return js_nan();
  191. return Value(::tan(number.as_double()));
  192. }
  193. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  194. {
  195. return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
  196. }
  197. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  198. {
  199. auto number = interpreter.argument(0).to_number(interpreter);
  200. if (interpreter.exception())
  201. return {};
  202. if (number.is_nan())
  203. return js_nan();
  204. return Value(::pow(M_E, number.as_double()));
  205. }
  206. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  207. {
  208. auto number = interpreter.argument(0).to_number(interpreter);
  209. if (interpreter.exception())
  210. return {};
  211. if (number.is_nan())
  212. return js_nan();
  213. return Value(::pow(M_E, number.as_double()) - 1);
  214. }
  215. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  216. {
  217. auto number = interpreter.argument(0).to_number(interpreter);
  218. if (interpreter.exception())
  219. return {};
  220. if (number.is_positive_zero())
  221. return Value(0);
  222. if (number.is_negative_zero())
  223. return Value(-0.0);
  224. if (number.as_double() > 0)
  225. return Value(1);
  226. if (number.as_double() < 0)
  227. return Value(-1);
  228. return js_nan();
  229. }
  230. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  231. {
  232. auto number = interpreter.argument(0).to_number(interpreter);
  233. if (interpreter.exception())
  234. return {};
  235. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  236. return Value(32);
  237. return Value(__builtin_clz((unsigned)number.as_double()));
  238. }
  239. }