MathObject.cpp 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/FlyString.h>
  27. #include <AK/Function.h>
  28. #include <LibJS/Interpreter.h>
  29. #include <LibJS/Runtime/MathObject.h>
  30. #include <math.h>
  31. namespace JS {
  32. MathObject::MathObject()
  33. {
  34. put_native_function("abs", abs, 1);
  35. put_native_function("random", random);
  36. put_native_function("sqrt", sqrt, 1);
  37. put_native_function("floor", floor, 1);
  38. put_native_function("ceil", ceil, 1);
  39. put_native_function("round", round, 1);
  40. put_native_function("max", max, 2);
  41. put_native_function("trunc", trunc, 1);
  42. put("E", Value(M_E));
  43. put("LN2", Value(M_LN2));
  44. put("LN10", Value(M_LN10));
  45. put("LOG2E", Value(log2(M_E)));
  46. put("LOG10E", Value(log10(M_E)));
  47. put("PI", Value(M_PI));
  48. put("SQRT1_2", Value(::sqrt(1.0 / 2.0)));
  49. put("SQRT2", Value(::sqrt(2)));
  50. }
  51. MathObject::~MathObject()
  52. {
  53. }
  54. Value MathObject::abs(Interpreter& interpreter)
  55. {
  56. if (!interpreter.argument_count())
  57. return js_nan();
  58. auto number = interpreter.argument(0).to_number();
  59. if (number.is_nan())
  60. return js_nan();
  61. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  62. }
  63. Value MathObject::random(Interpreter&)
  64. {
  65. #ifdef __serenity__
  66. double r = (double)arc4random() / (double)UINT32_MAX;
  67. #else
  68. double r = (double)rand() / (double)RAND_MAX;
  69. #endif
  70. return Value(r);
  71. }
  72. Value MathObject::sqrt(Interpreter& interpreter)
  73. {
  74. if (!interpreter.argument_count())
  75. return js_nan();
  76. auto number = interpreter.argument(0).to_number();
  77. if (number.is_nan())
  78. return js_nan();
  79. return Value(::sqrt(number.as_double()));
  80. }
  81. Value MathObject::floor(Interpreter& interpreter)
  82. {
  83. if (!interpreter.argument_count())
  84. return js_nan();
  85. auto number = interpreter.argument(0).to_number();
  86. if (number.is_nan())
  87. return js_nan();
  88. return Value(::floor(number.as_double()));
  89. }
  90. Value MathObject::ceil(Interpreter& interpreter)
  91. {
  92. if (!interpreter.argument_count())
  93. return js_nan();
  94. auto number = interpreter.argument(0).to_number();
  95. if (number.is_nan())
  96. return js_nan();
  97. return Value(::ceil(number.as_double()));
  98. }
  99. Value MathObject::round(Interpreter& interpreter)
  100. {
  101. if (!interpreter.argument_count())
  102. return js_nan();
  103. auto number = interpreter.argument(0).to_number();
  104. if (number.is_nan())
  105. return js_nan();
  106. // FIXME: Use ::round() instead of ::roundf().
  107. return Value(::roundf(number.as_double()));
  108. }
  109. Value MathObject::max(Interpreter& interpreter)
  110. {
  111. if (!interpreter.argument_count()) {
  112. // FIXME: I think this should return *negative* infinity.
  113. return js_infinity();
  114. } else if (interpreter.argument_count() == 1) {
  115. return interpreter.argument(0).to_number();
  116. } else {
  117. Value max = interpreter.argument(0).to_number();
  118. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  119. Value cur = interpreter.argument(i).to_number();
  120. max = Value(cur.as_double() > max.as_double() ? cur : max);
  121. }
  122. return max;
  123. }
  124. }
  125. Value MathObject::trunc(Interpreter& interpreter)
  126. {
  127. if (!interpreter.argument_count())
  128. return js_nan();
  129. auto number = interpreter.argument(0).to_number();
  130. if (number.is_nan())
  131. return js_nan();
  132. if (number.as_double() < 0)
  133. return MathObject::ceil(interpreter);
  134. return MathObject::floor(interpreter);
  135. }
  136. }