MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. //#define MM_DEBUG
  10. //#define PAGE_FAULT_DEBUG
  11. static MemoryManager* s_the;
  12. MemoryManager& MM
  13. {
  14. return *s_the;
  15. }
  16. MemoryManager::MemoryManager()
  17. {
  18. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  19. m_page_table_zero = (dword*)0x6000;
  20. initialize_paging();
  21. }
  22. MemoryManager::~MemoryManager()
  23. {
  24. }
  25. PageDirectory::PageDirectory(PhysicalAddress paddr)
  26. {
  27. kprintf("Instantiating PageDirectory with specific paddr P%x\n", paddr.get());
  28. m_directory_page = adopt(*new PhysicalPage(paddr, true));
  29. }
  30. PageDirectory::PageDirectory()
  31. {
  32. MM.populate_page_directory(*this);
  33. }
  34. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  35. {
  36. page_directory.m_directory_page = allocate_supervisor_physical_page();
  37. memset(page_directory.entries(), 0, PAGE_SIZE);
  38. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  39. }
  40. void MemoryManager::initialize_paging()
  41. {
  42. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  43. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  44. memset(m_page_table_zero, 0, PAGE_SIZE);
  45. #ifdef MM_DEBUG
  46. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  47. #endif
  48. #ifdef MM_DEBUG
  49. dbgprintf("MM: Protect against null dereferences\n");
  50. #endif
  51. // Make null dereferences crash.
  52. map_protected(LinearAddress(0), PAGE_SIZE);
  53. #ifdef MM_DEBUG
  54. dbgprintf("MM: Identity map bottom 4MB\n");
  55. #endif
  56. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  57. // Every process shares these mappings.
  58. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  59. // Basic memory map:
  60. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  61. // 1 MB -> 2 MB kmalloc_eternal() space.
  62. // 2 MB -> 3 MB kmalloc() space.
  63. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  64. // 4 MB -> 32 MB Userspace physical pages (available for allocation!)
  65. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  66. m_free_supervisor_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), true)));
  67. #ifdef MM_DEBUG
  68. dbgprintf("MM: 4MB-32MB available for allocation\n");
  69. #endif
  70. for (size_t i = (4 * MB); i < (32 * MB); i += PAGE_SIZE)
  71. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), false)));
  72. m_quickmap_addr = LinearAddress(m_free_physical_pages.take_last().leakRef()->paddr().get());
  73. #ifdef MM_DEBUG
  74. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  75. dbgprintf("MM: Installing page directory\n");
  76. #endif
  77. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  78. asm volatile(
  79. "movl %cr0, %eax\n"
  80. "orl $0x80000001, %eax\n"
  81. "movl %eax, %cr0\n"
  82. );
  83. }
  84. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  85. {
  86. ASSERT(!page_directory.m_physical_pages.contains(index));
  87. auto physical_page = allocate_supervisor_physical_page();
  88. if (!physical_page)
  89. return nullptr;
  90. dword address = physical_page->paddr().get();
  91. memset((void*)address, 0, PAGE_SIZE);
  92. page_directory.m_physical_pages.set(index, physical_page.copyRef());
  93. return physical_page;
  94. }
  95. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  96. {
  97. InterruptDisabler disabler;
  98. // FIXME: ASSERT(laddr is 4KB aligned);
  99. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  100. auto pte_address = laddr.offset(offset);
  101. auto pte = ensure_pte(page_directory, pte_address);
  102. pte.set_physical_page_base(0);
  103. pte.set_user_allowed(false);
  104. pte.set_present(true);
  105. pte.set_writable(true);
  106. flush_tlb(pte_address);
  107. }
  108. }
  109. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  110. {
  111. ASSERT_INTERRUPTS_DISABLED();
  112. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  113. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  114. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  115. if (!pde.is_present()) {
  116. #ifdef MM_DEBUG
  117. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  118. #endif
  119. if (page_directory_index == 0) {
  120. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  121. pde.setPageTableBase((dword)m_page_table_zero);
  122. pde.set_user_allowed(false);
  123. pde.set_present(true);
  124. pde.set_writable(true);
  125. } else {
  126. ASSERT(&page_directory != m_kernel_page_directory.ptr());
  127. auto page_table = allocate_page_table(page_directory, page_directory_index);
  128. #ifdef MM_DEBUG
  129. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  130. &page_directory,
  131. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  132. page_directory.cr3(),
  133. page_directory_index,
  134. laddr.get(),
  135. page_table->paddr().get());
  136. #endif
  137. pde.setPageTableBase(page_table->paddr().get());
  138. pde.set_user_allowed(true);
  139. pde.set_present(true);
  140. pde.set_writable(true);
  141. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  142. }
  143. }
  144. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  145. }
  146. void MemoryManager::map_protected(LinearAddress linearAddress, size_t length)
  147. {
  148. InterruptDisabler disabler;
  149. // FIXME: ASSERT(linearAddress is 4KB aligned);
  150. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  151. auto pteAddress = linearAddress.offset(offset);
  152. auto pte = ensure_pte(kernel_page_directory(), pteAddress);
  153. pte.set_physical_page_base(pteAddress.get());
  154. pte.set_user_allowed(false);
  155. pte.set_present(false);
  156. pte.set_writable(false);
  157. flush_tlb(pteAddress);
  158. }
  159. }
  160. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  161. {
  162. InterruptDisabler disabler;
  163. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  164. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  165. auto pteAddress = laddr.offset(offset);
  166. auto pte = ensure_pte(page_directory, pteAddress);
  167. pte.set_physical_page_base(pteAddress.get());
  168. pte.set_user_allowed(false);
  169. pte.set_present(true);
  170. pte.set_writable(true);
  171. page_directory.flush(pteAddress);
  172. }
  173. }
  174. void MemoryManager::initialize()
  175. {
  176. s_the = new MemoryManager;
  177. }
  178. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  179. {
  180. ASSERT_INTERRUPTS_DISABLED();
  181. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  182. for (auto& region : process.m_regions) {
  183. if (region->contains(laddr))
  184. return region.ptr();
  185. }
  186. kprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get());
  187. return nullptr;
  188. }
  189. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  190. {
  191. ASSERT_INTERRUPTS_DISABLED();
  192. auto& vmo = region.vmo();
  193. auto physical_page = allocate_physical_page();
  194. byte* dest_ptr = quickmap_page(*physical_page);
  195. memset(dest_ptr, 0, PAGE_SIZE);
  196. #ifdef PAGE_FAULT_DEBUG
  197. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  198. #endif
  199. unquickmap_page();
  200. region.cow_map.set(page_index_in_region, false);
  201. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  202. remap_region_page(region, page_index_in_region, true);
  203. return true;
  204. }
  205. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  206. {
  207. ASSERT_INTERRUPTS_DISABLED();
  208. auto& vmo = region.vmo();
  209. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  210. #ifdef PAGE_FAULT_DEBUG
  211. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  212. #endif
  213. region.cow_map.set(page_index_in_region, false);
  214. remap_region_page(region, page_index_in_region, true);
  215. return true;
  216. }
  217. #ifdef PAGE_FAULT_DEBUG
  218. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  219. #endif
  220. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  221. auto physical_page = allocate_physical_page();
  222. byte* dest_ptr = quickmap_page(*physical_page);
  223. const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  224. #ifdef PAGE_FAULT_DEBUG
  225. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  226. #endif
  227. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  228. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  229. unquickmap_page();
  230. region.cow_map.set(page_index_in_region, false);
  231. remap_region_page(region, page_index_in_region, true);
  232. return true;
  233. }
  234. bool Region::page_in()
  235. {
  236. ASSERT(m_page_directory);
  237. ASSERT(!vmo().is_anonymous());
  238. ASSERT(vmo().inode());
  239. #ifdef MM_DEBUG
  240. dbgprintf("MM: page_in %u pages\n", page_count());
  241. #endif
  242. for (size_t i = 0; i < page_count(); ++i) {
  243. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  244. if (vmo_page.is_null()) {
  245. bool success = MM.page_in_from_inode(*this, i);
  246. if (!success)
  247. return false;
  248. }
  249. MM.remap_region_page(*this, i, true);
  250. }
  251. return true;
  252. }
  253. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  254. {
  255. ASSERT(region.m_page_directory);
  256. auto& vmo = region.vmo();
  257. ASSERT(!vmo.is_anonymous());
  258. ASSERT(vmo.inode());
  259. auto& inode = *vmo.inode();
  260. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  261. ASSERT(vmo_page.is_null());
  262. vmo_page = allocate_physical_page();
  263. if (vmo_page.is_null()) {
  264. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  265. return false;
  266. }
  267. remap_region_page(region, page_index_in_region, true);
  268. byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  269. #ifdef MM_DEBUG
  270. dbgprintf("MM: page_in_from_inode ready to read from inode, will write to L%x!\n", dest_ptr);
  271. #endif
  272. sti(); // Oh god here we go...
  273. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
  274. if (nread < 0) {
  275. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  276. return false;
  277. }
  278. if (nread < PAGE_SIZE) {
  279. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  280. memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
  281. }
  282. cli();
  283. return true;
  284. }
  285. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  286. {
  287. ASSERT_INTERRUPTS_DISABLED();
  288. #ifdef PAGE_FAULT_DEBUG
  289. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  290. #endif
  291. ASSERT(fault.laddr() != m_quickmap_addr);
  292. auto* region = region_from_laddr(*current, fault.laddr());
  293. if (!region) {
  294. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  295. return PageFaultResponse::ShouldCrash;
  296. }
  297. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  298. if (fault.is_not_present()) {
  299. if (region->vmo().inode()) {
  300. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  301. page_in_from_inode(*region, page_index_in_region);
  302. return PageFaultResponse::Continue;
  303. } else {
  304. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  305. zero_page(*region, page_index_in_region);
  306. return PageFaultResponse::Continue;
  307. }
  308. } else if (fault.is_protection_violation()) {
  309. if (region->cow_map.get(page_index_in_region)) {
  310. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  311. bool success = copy_on_write(*region, page_index_in_region);
  312. ASSERT(success);
  313. return PageFaultResponse::Continue;
  314. }
  315. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  316. } else {
  317. ASSERT_NOT_REACHED();
  318. }
  319. return PageFaultResponse::ShouldCrash;
  320. }
  321. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
  322. {
  323. InterruptDisabler disabler;
  324. if (1 > m_free_physical_pages.size())
  325. return { };
  326. #ifdef MM_DEBUG
  327. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  328. #endif
  329. return m_free_physical_pages.take_last();
  330. }
  331. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  332. {
  333. InterruptDisabler disabler;
  334. if (1 > m_free_supervisor_physical_pages.size())
  335. return { };
  336. #ifdef MM_DEBUG
  337. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  338. #endif
  339. return m_free_supervisor_physical_pages.take_last();
  340. }
  341. void MemoryManager::enter_process_paging_scope(Process& process)
  342. {
  343. InterruptDisabler disabler;
  344. current->m_tss.cr3 = process.page_directory().cr3();
  345. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  346. }
  347. void MemoryManager::flush_entire_tlb()
  348. {
  349. asm volatile(
  350. "mov %cr3, %eax\n"
  351. "mov %eax, %cr3\n"
  352. );
  353. }
  354. void MemoryManager::flush_tlb(LinearAddress laddr)
  355. {
  356. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  357. }
  358. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  359. {
  360. ASSERT_INTERRUPTS_DISABLED();
  361. auto page_laddr = m_quickmap_addr;
  362. auto pte = ensure_pte(current->page_directory(), page_laddr);
  363. pte.set_physical_page_base(physical_page.paddr().get());
  364. pte.set_present(true);
  365. pte.set_writable(true);
  366. flush_tlb(page_laddr);
  367. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  368. #ifdef MM_DEBUG
  369. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  370. #endif
  371. return page_laddr.asPtr();
  372. }
  373. void MemoryManager::unquickmap_page()
  374. {
  375. ASSERT_INTERRUPTS_DISABLED();
  376. auto page_laddr = m_quickmap_addr;
  377. auto pte = ensure_pte(current->page_directory(), page_laddr);
  378. #ifdef MM_DEBUG
  379. auto old_physical_address = pte.physical_page_base();
  380. #endif
  381. pte.set_physical_page_base(0);
  382. pte.set_present(false);
  383. pte.set_writable(false);
  384. flush_tlb(page_laddr);
  385. #ifdef MM_DEBUG
  386. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  387. #endif
  388. }
  389. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  390. {
  391. ASSERT(region.m_page_directory);
  392. InterruptDisabler disabler;
  393. auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
  394. auto pte = ensure_pte(*region.m_page_directory, page_laddr);
  395. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  396. ASSERT(physical_page);
  397. pte.set_physical_page_base(physical_page->paddr().get());
  398. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  399. if (region.cow_map.get(page_index_in_region))
  400. pte.set_writable(false);
  401. else
  402. pte.set_writable(region.is_writable);
  403. pte.set_user_allowed(user_allowed);
  404. region.m_page_directory->flush(page_laddr);
  405. #ifdef MM_DEBUG
  406. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.m_page_directory->cr3(), pte.ptr(), region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  407. #endif
  408. }
  409. void MemoryManager::remap_region(Process& process, Region& region)
  410. {
  411. InterruptDisabler disabler;
  412. map_region_at_address(process.page_directory(), region, region.linearAddress, true);
  413. }
  414. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  415. {
  416. InterruptDisabler disabler;
  417. region.m_page_directory = page_directory;
  418. auto& vmo = region.vmo();
  419. #ifdef MM_DEBUG
  420. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  421. #endif
  422. for (size_t i = 0; i < region.page_count(); ++i) {
  423. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  424. auto pte = ensure_pte(page_directory, page_laddr);
  425. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  426. if (physical_page) {
  427. pte.set_physical_page_base(physical_page->paddr().get());
  428. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  429. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  430. if (region.cow_map.get(region.first_page_index() + i))
  431. pte.set_writable(false);
  432. else
  433. pte.set_writable(region.is_writable);
  434. } else {
  435. pte.set_physical_page_base(0);
  436. pte.set_present(false);
  437. pte.set_writable(region.is_writable);
  438. }
  439. pte.set_user_allowed(user_allowed);
  440. page_directory.flush(page_laddr);
  441. #ifdef MM_DEBUG
  442. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  443. #endif
  444. }
  445. }
  446. bool MemoryManager::unmap_region(Region& region)
  447. {
  448. ASSERT(region.m_page_directory);
  449. InterruptDisabler disabler;
  450. for (size_t i = 0; i < region.page_count(); ++i) {
  451. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  452. auto pte = ensure_pte(*region.m_page_directory, laddr);
  453. pte.set_physical_page_base(0);
  454. pte.set_present(false);
  455. pte.set_writable(false);
  456. pte.set_user_allowed(false);
  457. region.m_page_directory->flush(laddr);
  458. #ifdef MM_DEBUG
  459. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  460. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  461. #endif
  462. }
  463. region.m_page_directory.clear();
  464. return true;
  465. }
  466. bool MemoryManager::map_region(Process& process, Region& region)
  467. {
  468. map_region_at_address(process.page_directory(), region, region.linearAddress, true);
  469. return true;
  470. }
  471. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  472. {
  473. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  474. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  475. auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
  476. if (!pde.is_present())
  477. return false;
  478. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  479. if (!pte.is_present())
  480. return false;
  481. if (process.isRing3() && !pte.is_user_allowed())
  482. return false;
  483. return true;
  484. }
  485. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  486. {
  487. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  488. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  489. auto pde = PageDirectoryEntry(&const_cast<Process&>(process).page_directory().entries()[pageDirectoryIndex]);
  490. if (!pde.is_present())
  491. return false;
  492. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  493. if (!pte.is_present())
  494. return false;
  495. if (process.isRing3() && !pte.is_user_allowed())
  496. return false;
  497. if (!pte.is_writable())
  498. return false;
  499. return true;
  500. }
  501. RetainPtr<Region> Region::clone()
  502. {
  503. InterruptDisabler disabler;
  504. if (m_shared || (is_readable && !is_writable)) {
  505. // Create a new region backed by the same VMObject.
  506. return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
  507. }
  508. dbgprintf("%s<%u> Region::clone(): cowing %s (L%x)\n",
  509. current->name().characters(),
  510. current->pid(),
  511. name.characters(),
  512. linearAddress.get());
  513. // Set up a COW region. The parent (this) region becomes COW as well!
  514. for (size_t i = 0; i < page_count(); ++i)
  515. cow_map.set(i, true);
  516. MM.remap_region(*current, *this);
  517. return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
  518. }
  519. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  520. : linearAddress(a)
  521. , size(s)
  522. , m_vmo(VMObject::create_anonymous(s))
  523. , name(move(n))
  524. , is_readable(r)
  525. , is_writable(w)
  526. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  527. {
  528. m_vmo->set_name(name);
  529. MM.register_region(*this);
  530. }
  531. Region::Region(LinearAddress a, size_t s, RetainPtr<Inode>&& inode, String&& n, bool r, bool w)
  532. : linearAddress(a)
  533. , size(s)
  534. , m_vmo(VMObject::create_file_backed(move(inode), s))
  535. , name(move(n))
  536. , is_readable(r)
  537. , is_writable(w)
  538. , cow_map(Bitmap::create(m_vmo->page_count()))
  539. {
  540. MM.register_region(*this);
  541. }
  542. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  543. : linearAddress(a)
  544. , size(s)
  545. , m_offset_in_vmo(offset_in_vmo)
  546. , m_vmo(move(vmo))
  547. , name(move(n))
  548. , is_readable(r)
  549. , is_writable(w)
  550. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  551. {
  552. MM.register_region(*this);
  553. }
  554. Region::~Region()
  555. {
  556. if (m_page_directory) {
  557. MM.unmap_region(*this);
  558. ASSERT(!m_page_directory);
  559. }
  560. MM.unregister_region(*this);
  561. }
  562. PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor)
  563. : m_supervisor(supervisor)
  564. , m_paddr(paddr)
  565. {
  566. }
  567. void PhysicalPage::return_to_freelist()
  568. {
  569. ASSERT((paddr().get() & ~PAGE_MASK) == 0);
  570. InterruptDisabler disabler;
  571. m_retain_count = 1;
  572. if (m_supervisor)
  573. MM.m_free_supervisor_physical_pages.append(adopt(*this));
  574. else
  575. MM.m_free_physical_pages.append(adopt(*this));
  576. #ifdef MM_DEBUG
  577. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  578. #endif
  579. }
  580. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Inode>&& inode, size_t size)
  581. {
  582. InterruptDisabler disabler;
  583. if (inode->vmo())
  584. return static_cast<VMObject*>(inode->vmo());
  585. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  586. auto vmo = adopt(*new VMObject(move(inode), size));
  587. vmo->inode()->set_vmo(vmo.ptr());
  588. return vmo;
  589. }
  590. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  591. {
  592. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  593. return adopt(*new VMObject(size));
  594. }
  595. RetainPtr<VMObject> VMObject::create_framebuffer_wrapper(PhysicalAddress paddr, size_t size)
  596. {
  597. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  598. return adopt(*new VMObject(paddr, size));
  599. }
  600. RetainPtr<VMObject> VMObject::clone()
  601. {
  602. return adopt(*new VMObject(*this));
  603. }
  604. VMObject::VMObject(VMObject& other)
  605. : m_name(other.m_name)
  606. , m_anonymous(other.m_anonymous)
  607. , m_inode_offset(other.m_inode_offset)
  608. , m_size(other.m_size)
  609. , m_inode(other.m_inode)
  610. , m_physical_pages(other.m_physical_pages)
  611. {
  612. MM.register_vmo(*this);
  613. }
  614. VMObject::VMObject(size_t size)
  615. : m_anonymous(true)
  616. , m_size(size)
  617. {
  618. MM.register_vmo(*this);
  619. m_physical_pages.resize(page_count());
  620. }
  621. VMObject::VMObject(PhysicalAddress paddr, size_t size)
  622. : m_anonymous(true)
  623. , m_size(size)
  624. {
  625. MM.register_vmo(*this);
  626. for (size_t i = 0; i < size; i += PAGE_SIZE) {
  627. m_physical_pages.append(adopt(*new PhysicalPage(paddr.offset(i), false)));
  628. }
  629. ASSERT(m_physical_pages.size() == page_count());
  630. }
  631. VMObject::VMObject(RetainPtr<Inode>&& inode, size_t size)
  632. : m_size(size)
  633. , m_inode(move(inode))
  634. {
  635. m_physical_pages.resize(page_count());
  636. MM.register_vmo(*this);
  637. }
  638. VMObject::~VMObject()
  639. {
  640. if (m_inode) {
  641. ASSERT(m_inode->vmo() == this);
  642. m_inode->set_vmo(nullptr);
  643. }
  644. MM.unregister_vmo(*this);
  645. }
  646. int Region::commit()
  647. {
  648. InterruptDisabler disabler;
  649. #ifdef MM_DEBUG
  650. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), linearAddress.get());
  651. #endif
  652. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  653. if (!vmo().physical_pages()[i].is_null())
  654. continue;
  655. auto physical_page = MM.allocate_physical_page();
  656. if (!physical_page) {
  657. kprintf("MM: commit was unable to allocate a physical page\n");
  658. return -ENOMEM;
  659. }
  660. vmo().physical_pages()[i] = move(physical_page);
  661. MM.remap_region_page(*this, i, true);
  662. }
  663. return 0;
  664. }
  665. void MemoryManager::register_vmo(VMObject& vmo)
  666. {
  667. InterruptDisabler disabler;
  668. m_vmos.set(&vmo);
  669. }
  670. void MemoryManager::unregister_vmo(VMObject& vmo)
  671. {
  672. InterruptDisabler disabler;
  673. m_vmos.remove(&vmo);
  674. }
  675. void MemoryManager::register_region(Region& region)
  676. {
  677. InterruptDisabler disabler;
  678. m_regions.set(&region);
  679. }
  680. void MemoryManager::unregister_region(Region& region)
  681. {
  682. InterruptDisabler disabler;
  683. m_regions.remove(&region);
  684. }
  685. size_t Region::committed() const
  686. {
  687. size_t bytes = 0;
  688. for (size_t i = 0; i < page_count(); ++i) {
  689. if (m_vmo->physical_pages()[first_page_index() + i])
  690. bytes += PAGE_SIZE;
  691. }
  692. return bytes;
  693. }
  694. PageDirectory::~PageDirectory()
  695. {
  696. ASSERT_INTERRUPTS_DISABLED();
  697. #ifdef MM_DEBUG
  698. dbgprintf("MM: ~PageDirectory K%x\n", this);
  699. #endif
  700. }
  701. void PageDirectory::flush(LinearAddress laddr)
  702. {
  703. if (&current->page_directory() == this)
  704. MM.flush_tlb(laddr);
  705. }