Process.cpp 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194
  1. #include "types.h"
  2. #include "Process.h"
  3. #include "kmalloc.h"
  4. #include "StdLib.h"
  5. #include "i386.h"
  6. #include "system.h"
  7. #include <Kernel/FileDescriptor.h>
  8. #include <Kernel/VirtualFileSystem.h>
  9. #include "ELFLoader.h"
  10. #include "MemoryManager.h"
  11. #include "i8253.h"
  12. #include "RTC.h"
  13. #include <AK/StdLibExtras.h>
  14. #include <LibC/signal_numbers.h>
  15. #include <LibC/errno_numbers.h>
  16. #include "Syscall.h"
  17. #include "Scheduler.h"
  18. #include "FIFO.h"
  19. #include "KSyms.h"
  20. #include <WindowServer/WSWindow.h>
  21. #include "MasterPTY.h"
  22. #include "elf.h"
  23. //#define DEBUG_IO
  24. //#define TASK_DEBUG
  25. //#define FORK_DEBUG
  26. #define SIGNAL_DEBUG
  27. #define MAX_PROCESS_GIDS 32
  28. static const dword default_kernel_stack_size = 16384;
  29. static const dword default_userspace_stack_size = 65536;
  30. static pid_t next_pid;
  31. InlineLinkedList<Process>* g_processes;
  32. static String* s_hostname;
  33. static Lock* s_hostname_lock;
  34. CoolGlobals* g_cool_globals;
  35. void Process::initialize()
  36. {
  37. #ifdef COOL_GLOBALS
  38. g_cool_globals = reinterpret_cast<CoolGlobals*>(0x1000);
  39. #endif
  40. next_pid = 0;
  41. g_processes = new InlineLinkedList<Process>;
  42. s_hostname = new String("courage");
  43. s_hostname_lock = new Lock;
  44. Scheduler::initialize();
  45. initialize_gui_statics();
  46. }
  47. Vector<pid_t> Process::all_pids()
  48. {
  49. Vector<pid_t> pids;
  50. pids.ensure_capacity(system.nprocess);
  51. InterruptDisabler disabler;
  52. for (auto* process = g_processes->head(); process; process = process->next())
  53. pids.append(process->pid());
  54. return pids;
  55. }
  56. Vector<Process*> Process::all_processes()
  57. {
  58. Vector<Process*> processes;
  59. processes.ensure_capacity(system.nprocess);
  60. InterruptDisabler disabler;
  61. for (auto* process = g_processes->head(); process; process = process->next())
  62. processes.append(process);
  63. return processes;
  64. }
  65. Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable, bool commit)
  66. {
  67. size = PAGE_ROUND_UP(size);
  68. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  69. if (laddr.is_null()) {
  70. laddr = m_next_region;
  71. m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
  72. }
  73. laddr.mask(0xfffff000);
  74. m_regions.append(adopt(*new Region(laddr, size, move(name), is_readable, is_writable)));
  75. MM.map_region(*this, *m_regions.last());
  76. if (commit)
  77. m_regions.last()->commit();
  78. return m_regions.last().ptr();
  79. }
  80. Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr<Inode>&& inode, String&& name, bool is_readable, bool is_writable)
  81. {
  82. size = PAGE_ROUND_UP(size);
  83. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  84. if (laddr.is_null()) {
  85. laddr = m_next_region;
  86. m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
  87. }
  88. laddr.mask(0xfffff000);
  89. m_regions.append(adopt(*new Region(laddr, size, move(inode), move(name), is_readable, is_writable)));
  90. MM.map_region(*this, *m_regions.last());
  91. return m_regions.last().ptr();
  92. }
  93. Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable)
  94. {
  95. ASSERT(vmo);
  96. size = PAGE_ROUND_UP(size);
  97. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  98. if (laddr.is_null()) {
  99. laddr = m_next_region;
  100. m_next_region = m_next_region.offset(size).offset(PAGE_SIZE);
  101. }
  102. laddr.mask(0xfffff000);
  103. offset_in_vmo &= PAGE_MASK;
  104. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  105. m_regions.append(adopt(*new Region(laddr, size, move(vmo), offset_in_vmo, move(name), is_readable, is_writable)));
  106. MM.map_region(*this, *m_regions.last());
  107. return m_regions.last().ptr();
  108. }
  109. bool Process::deallocate_region(Region& region)
  110. {
  111. InterruptDisabler disabler;
  112. for (size_t i = 0; i < m_regions.size(); ++i) {
  113. if (m_regions[i].ptr() == &region) {
  114. MM.unmap_region(region);
  115. m_regions.remove(i);
  116. return true;
  117. }
  118. }
  119. return false;
  120. }
  121. Region* Process::region_from_range(LinearAddress laddr, size_t size)
  122. {
  123. for (auto& region : m_regions) {
  124. if (region->laddr() == laddr && region->size() == size)
  125. return region.ptr();
  126. }
  127. return nullptr;
  128. }
  129. int Process::sys$set_mmap_name(void* addr, size_t size, const char* name)
  130. {
  131. if (!validate_read_str(name))
  132. return -EFAULT;
  133. auto* region = region_from_range(LinearAddress((dword)addr), size);
  134. if (!region)
  135. return -EINVAL;
  136. region->set_name(String(name));
  137. return 0;
  138. }
  139. void* Process::sys$mmap(const Syscall::SC_mmap_params* params)
  140. {
  141. if (!validate_read(params, sizeof(Syscall::SC_mmap_params)))
  142. return (void*)-EFAULT;
  143. void* addr = (void*)params->addr;
  144. size_t size = params->size;
  145. int prot = params->prot;
  146. int flags = params->flags;
  147. int fd = params->fd;
  148. off_t offset = params->offset;
  149. if (size == 0)
  150. return (void*)-EINVAL;
  151. if ((dword)addr & ~PAGE_MASK || size & ~PAGE_MASK)
  152. return (void*)-EINVAL;
  153. if (flags & MAP_ANONYMOUS) {
  154. InterruptDisabler disabler;
  155. // FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae.
  156. ASSERT(addr == nullptr);
  157. auto* region = allocate_region(LinearAddress(), size, "mmap", prot & PROT_READ, prot & PROT_WRITE, false);
  158. if (!region)
  159. return (void*)-ENOMEM;
  160. return region->laddr().as_ptr();
  161. }
  162. if (offset & ~PAGE_MASK)
  163. return (void*)-EINVAL;
  164. auto* descriptor = file_descriptor(fd);
  165. if (!descriptor)
  166. return (void*)-EBADF;
  167. if (!descriptor->supports_mmap())
  168. return (void*)-ENODEV;
  169. // FIXME: If PROT_EXEC, check that the underlying file system isn't mounted noexec.
  170. auto region_name = descriptor->absolute_path();
  171. InterruptDisabler disabler;
  172. // FIXME: Implement mapping at a client-specified address. Most of the support is already in plcae.
  173. ASSERT(addr == nullptr);
  174. auto* region = allocate_file_backed_region(LinearAddress(), size, descriptor->inode(), move(region_name), prot & PROT_READ, prot & PROT_WRITE);
  175. if (!region)
  176. return (void*)-ENOMEM;
  177. return region->laddr().as_ptr();
  178. }
  179. int Process::sys$munmap(void* addr, size_t size)
  180. {
  181. InterruptDisabler disabler;
  182. auto* region = region_from_range(LinearAddress((dword)addr), size);
  183. if (!region)
  184. return -1;
  185. if (!deallocate_region(*region))
  186. return -1;
  187. return 0;
  188. }
  189. int Process::sys$gethostname(char* buffer, size_t size)
  190. {
  191. if (!validate_write(buffer, size))
  192. return -EFAULT;
  193. LOCKER(*s_hostname_lock);
  194. if (size < (s_hostname->length() + 1))
  195. return -ENAMETOOLONG;
  196. strcpy(buffer, s_hostname->characters());
  197. return 0;
  198. }
  199. Process* Process::fork(RegisterDump& regs)
  200. {
  201. auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copy_ref(), m_executable.copy_ref(), m_tty, this);
  202. if (!child)
  203. return nullptr;
  204. memcpy(child->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
  205. child->m_signal_mask = m_signal_mask;
  206. #ifdef FORK_DEBUG
  207. dbgprintf("fork: child=%p\n", child);
  208. #endif
  209. child->m_initial_arguments = m_initial_arguments;
  210. child->m_initial_environment = m_initial_environment;
  211. for (auto& region : m_regions) {
  212. #ifdef FORK_DEBUG
  213. dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name.characters(), region->laddr().get());
  214. #endif
  215. auto cloned_region = region->clone();
  216. child->m_regions.append(move(cloned_region));
  217. MM.map_region(*child, *child->m_regions.last());
  218. if (region.ptr() == m_display_framebuffer_region.ptr())
  219. child->m_display_framebuffer_region = child->m_regions.last().copy_ref();
  220. }
  221. for (auto gid : m_gids)
  222. child->m_gids.set(gid);
  223. child->m_tss.eax = 0; // fork() returns 0 in the child :^)
  224. child->m_tss.ebx = regs.ebx;
  225. child->m_tss.ecx = regs.ecx;
  226. child->m_tss.edx = regs.edx;
  227. child->m_tss.ebp = regs.ebp;
  228. child->m_tss.esp = regs.esp_if_crossRing;
  229. child->m_tss.esi = regs.esi;
  230. child->m_tss.edi = regs.edi;
  231. child->m_tss.eflags = regs.eflags;
  232. child->m_tss.eip = regs.eip;
  233. child->m_tss.cs = regs.cs;
  234. child->m_tss.ds = regs.ds;
  235. child->m_tss.es = regs.es;
  236. child->m_tss.fs = regs.fs;
  237. child->m_tss.gs = regs.gs;
  238. child->m_tss.ss = regs.ss_if_crossRing;
  239. child->m_fpu_state = m_fpu_state;
  240. child->m_has_used_fpu = m_has_used_fpu;
  241. #ifdef FORK_DEBUG
  242. dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp);
  243. #endif
  244. {
  245. InterruptDisabler disabler;
  246. g_processes->prepend(child);
  247. system.nprocess++;
  248. }
  249. #ifdef TASK_DEBUG
  250. kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip);
  251. #endif
  252. return child;
  253. }
  254. pid_t Process::sys$fork(RegisterDump& regs)
  255. {
  256. auto* child = fork(regs);
  257. ASSERT(child);
  258. return child->pid();
  259. }
  260. int Process::do_exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
  261. {
  262. ASSERT(is_ring3());
  263. auto parts = path.split('/');
  264. if (parts.is_empty())
  265. return -ENOENT;
  266. int error;
  267. auto descriptor = VFS::the().open(path, error, 0, 0, *cwd_inode());
  268. if (!descriptor) {
  269. ASSERT(error != 0);
  270. return error;
  271. }
  272. if (!descriptor->metadata().may_execute(m_euid, m_gids))
  273. return -EACCES;
  274. if (!descriptor->metadata().size) {
  275. kprintf("exec() of 0-length binaries not supported\n");
  276. return -ENOTIMPL;
  277. }
  278. dword entry_eip = 0;
  279. // FIXME: Is there a race here?
  280. auto old_page_directory = move(m_page_directory);
  281. m_page_directory = PageDirectory::create();
  282. #ifdef MM_DEBUG
  283. dbgprintf("Process %u exec: PD=%x created\n", pid(), m_page_directory.ptr());
  284. #endif
  285. ProcessPagingScope paging_scope(*this);
  286. auto vmo = VMObject::create_file_backed(descriptor->inode());
  287. vmo->set_name(descriptor->absolute_path());
  288. RetainPtr<Region> region = allocate_region_with_vmo(LinearAddress(), descriptor->metadata().size, vmo.copy_ref(), 0, "helper", true, false);
  289. // FIXME: Should we consider doing on-demand paging here? Is it actually useful?
  290. bool success = region->page_in();
  291. ASSERT(success);
  292. {
  293. InterruptDisabler disabler;
  294. // Okay, here comes the sleight of hand, pay close attention..
  295. auto old_regions = move(m_regions);
  296. ELFLoader loader(region->laddr().as_ptr());
  297. loader.map_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, const String& name) {
  298. ASSERT(size);
  299. ASSERT(alignment == PAGE_SIZE);
  300. size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
  301. (void) allocate_region_with_vmo(laddr, size, vmo.copy_ref(), offset_in_image, String(name), is_readable, is_writable);
  302. return laddr.as_ptr();
  303. };
  304. loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
  305. ASSERT(size);
  306. ASSERT(alignment == PAGE_SIZE);
  307. size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
  308. (void) allocate_region(laddr, size, String(name), is_readable, is_writable);
  309. return laddr.as_ptr();
  310. };
  311. bool success = loader.load();
  312. if (!success) {
  313. m_page_directory = move(old_page_directory);
  314. // FIXME: RAII this somehow instead.
  315. ASSERT(current == this);
  316. MM.enter_process_paging_scope(*this);
  317. m_regions = move(old_regions);
  318. kprintf("sys$execve: Failure loading %s\n", path.characters());
  319. return -ENOEXEC;
  320. }
  321. entry_eip = loader.entry().get();
  322. if (!entry_eip) {
  323. m_page_directory = move(old_page_directory);
  324. // FIXME: RAII this somehow instead.
  325. ASSERT(current == this);
  326. MM.enter_process_paging_scope(*this);
  327. m_regions = move(old_regions);
  328. return -ENOEXEC;
  329. }
  330. }
  331. m_regions.append(move(region));
  332. m_signal_stack_kernel_region = nullptr;
  333. m_signal_stack_user_region = nullptr;
  334. m_display_framebuffer_region = nullptr;
  335. set_default_signal_dispositions();
  336. m_signal_mask = 0xffffffff;
  337. m_pending_signals = 0;
  338. for (size_t i = 0; i < m_fds.size(); ++i) {
  339. auto& daf = m_fds[i];
  340. if (daf.descriptor && daf.flags & FD_CLOEXEC) {
  341. daf.descriptor->close();
  342. daf = { };
  343. }
  344. }
  345. // We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield().
  346. // The reason is that the task redirection we've set up above will be clobbered by the timer IRQ.
  347. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
  348. if (current == this)
  349. cli();
  350. Scheduler::prepare_to_modify_tss(*this);
  351. m_name = parts.take_last();
  352. dword old_esp0 = m_tss.esp0;
  353. memset(&m_tss, 0, sizeof(m_tss));
  354. m_tss.eflags = 0x0202;
  355. m_tss.eip = entry_eip;
  356. m_tss.cs = 0x1b;
  357. m_tss.ds = 0x23;
  358. m_tss.es = 0x23;
  359. m_tss.fs = 0x23;
  360. m_tss.gs = 0x23;
  361. m_tss.ss = 0x23;
  362. m_tss.cr3 = page_directory().cr3();
  363. m_stack_region = allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
  364. ASSERT(m_stack_region);
  365. m_stack_top3 = m_stack_region->laddr().offset(default_userspace_stack_size).get();
  366. m_tss.esp = m_stack_top3;
  367. m_tss.ss0 = 0x10;
  368. m_tss.esp0 = old_esp0;
  369. m_tss.ss2 = m_pid;
  370. m_executable = descriptor->inode();
  371. m_initial_arguments = move(arguments);
  372. m_initial_environment = move(environment);
  373. #ifdef TASK_DEBUG
  374. kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), m_tss.eip);
  375. #endif
  376. set_state(Skip1SchedulerPass);
  377. return 0;
  378. }
  379. int Process::exec(const String& path, Vector<String>&& arguments, Vector<String>&& environment)
  380. {
  381. // The bulk of exec() is done by do_exec(), which ensures that all locals
  382. // are cleaned up by the time we yield-teleport below.
  383. int rc = do_exec(path, move(arguments), move(environment));
  384. if (rc < 0)
  385. return rc;
  386. if (current == this) {
  387. Scheduler::yield();
  388. ASSERT_NOT_REACHED();
  389. }
  390. return 0;
  391. }
  392. int Process::sys$execve(const char* filename, const char** argv, const char** envp)
  393. {
  394. if (!validate_read_str(filename))
  395. return -EFAULT;
  396. if (argv) {
  397. if (!validate_read_typed(argv))
  398. return -EFAULT;
  399. for (size_t i = 0; argv[i]; ++i) {
  400. if (!validate_read_str(argv[i]))
  401. return -EFAULT;
  402. }
  403. }
  404. if (envp) {
  405. if (!validate_read_typed(envp))
  406. return -EFAULT;
  407. for (size_t i = 0; envp[i]; ++i) {
  408. if (!validate_read_str(envp[i]))
  409. return -EFAULT;
  410. }
  411. }
  412. String path(filename);
  413. auto parts = path.split('/');
  414. Vector<String> arguments;
  415. if (argv) {
  416. for (size_t i = 0; argv[i]; ++i) {
  417. arguments.append(argv[i]);
  418. }
  419. } else {
  420. arguments.append(parts.last());
  421. }
  422. Vector<String> environment;
  423. if (envp) {
  424. for (size_t i = 0; envp[i]; ++i)
  425. environment.append(envp[i]);
  426. }
  427. int rc = exec(path, move(arguments), move(environment));
  428. ASSERT(rc < 0); // We should never continue after a successful exec!
  429. return rc;
  430. }
  431. Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  432. {
  433. // FIXME: Don't split() the path twice (sys$spawn also does it...)
  434. auto parts = path.split('/');
  435. if (arguments.is_empty()) {
  436. arguments.append(parts.last());
  437. }
  438. RetainPtr<Inode> cwd;
  439. {
  440. InterruptDisabler disabler;
  441. if (auto* parent = Process::from_pid(parent_pid))
  442. cwd = parent->m_cwd.copy_ref();
  443. }
  444. if (!cwd)
  445. cwd = VFS::the().root_inode();
  446. auto* process = new Process(parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty);
  447. error = process->exec(path, move(arguments), move(environment));
  448. if (error != 0) {
  449. delete process;
  450. return nullptr;
  451. }
  452. {
  453. InterruptDisabler disabler;
  454. g_processes->prepend(process);
  455. system.nprocess++;
  456. }
  457. #ifdef TASK_DEBUG
  458. kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
  459. #endif
  460. error = 0;
  461. return process;
  462. }
  463. int Process::sys$get_environment(char*** environ)
  464. {
  465. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "environ");
  466. if (!region)
  467. return -ENOMEM;
  468. MM.map_region(*this, *region);
  469. char* envpage = (char*)region->laddr().get();
  470. *environ = (char**)envpage;
  471. char* bufptr = envpage + (sizeof(char*) * (m_initial_environment.size() + 1));
  472. for (size_t i = 0; i < m_initial_environment.size(); ++i) {
  473. (*environ)[i] = bufptr;
  474. memcpy(bufptr, m_initial_environment[i].characters(), m_initial_environment[i].length());
  475. bufptr += m_initial_environment[i].length();
  476. *(bufptr++) = '\0';
  477. }
  478. (*environ)[m_initial_environment.size()] = nullptr;
  479. return 0;
  480. }
  481. int Process::sys$get_arguments(int* argc, char*** argv)
  482. {
  483. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "argv");
  484. if (!region)
  485. return -ENOMEM;
  486. MM.map_region(*this, *region);
  487. char* argpage = (char*)region->laddr().get();
  488. *argc = m_initial_arguments.size();
  489. *argv = (char**)argpage;
  490. char* bufptr = argpage + (sizeof(char*) * (m_initial_arguments.size() + 1));
  491. for (size_t i = 0; i < m_initial_arguments.size(); ++i) {
  492. (*argv)[i] = bufptr;
  493. memcpy(bufptr, m_initial_arguments[i].characters(), m_initial_arguments[i].length());
  494. bufptr += m_initial_arguments[i].length();
  495. *(bufptr++) = '\0';
  496. }
  497. (*argv)[m_initial_arguments.size()] = nullptr;
  498. return 0;
  499. }
  500. Process* Process::create_kernel_process(String&& name, void (*e)())
  501. {
  502. auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
  503. process->m_tss.eip = (dword)e;
  504. if (process->pid() != 0) {
  505. {
  506. InterruptDisabler disabler;
  507. g_processes->prepend(process);
  508. system.nprocess++;
  509. }
  510. #ifdef TASK_DEBUG
  511. kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip);
  512. #endif
  513. }
  514. return process;
  515. }
  516. Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr<Inode>&& cwd, RetainPtr<Inode>&& executable, TTY* tty, Process* fork_parent)
  517. : m_name(move(name))
  518. , m_pid(next_pid++) // FIXME: RACE: This variable looks racy!
  519. , m_uid(uid)
  520. , m_gid(gid)
  521. , m_euid(uid)
  522. , m_egid(gid)
  523. , m_state(Runnable)
  524. , m_ring(ring)
  525. , m_cwd(move(cwd))
  526. , m_executable(move(executable))
  527. , m_tty(tty)
  528. , m_ppid(ppid)
  529. {
  530. set_default_signal_dispositions();
  531. memset(&m_fpu_state, 0, sizeof(FPUState));
  532. m_gids.set(m_gid);
  533. if (fork_parent) {
  534. m_sid = fork_parent->m_sid;
  535. m_pgid = fork_parent->m_pgid;
  536. } else {
  537. // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though..
  538. InterruptDisabler disabler;
  539. if (auto* parent = Process::from_pid(m_ppid)) {
  540. m_sid = parent->m_sid;
  541. m_pgid = parent->m_pgid;
  542. }
  543. }
  544. m_page_directory = PageDirectory::create();
  545. #ifdef MM_DEBUG
  546. dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory.ptr());
  547. #endif
  548. if (fork_parent) {
  549. m_fds.resize(fork_parent->m_fds.size());
  550. for (size_t i = 0; i < fork_parent->m_fds.size(); ++i) {
  551. if (!fork_parent->m_fds[i].descriptor)
  552. continue;
  553. #ifdef FORK_DEBUG
  554. dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].descriptor.ptr(), fork_parent->m_fds[i].descriptor->is_tty());
  555. #endif
  556. m_fds[i].descriptor = fork_parent->m_fds[i].descriptor->clone();
  557. m_fds[i].flags = fork_parent->m_fds[i].flags;
  558. }
  559. } else {
  560. m_fds.resize(m_max_open_file_descriptors);
  561. if (tty) {
  562. int error;
  563. m_fds[0].set(tty->open(error, O_RDONLY));
  564. m_fds[1].set(tty->open(error, O_WRONLY));
  565. m_fds[2].set(tty->open(error, O_WRONLY));
  566. }
  567. }
  568. if (fork_parent)
  569. m_next_region = fork_parent->m_next_region;
  570. else
  571. m_next_region = LinearAddress(0x10000000);
  572. if (fork_parent) {
  573. memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss));
  574. } else {
  575. memset(&m_tss, 0, sizeof(m_tss));
  576. // Only IF is set when a process boots.
  577. m_tss.eflags = 0x0202;
  578. word cs, ds, ss;
  579. if (is_ring0()) {
  580. cs = 0x08;
  581. ds = 0x10;
  582. ss = 0x10;
  583. } else {
  584. cs = 0x1b;
  585. ds = 0x23;
  586. ss = 0x23;
  587. }
  588. m_tss.ds = ds;
  589. m_tss.es = ds;
  590. m_tss.fs = ds;
  591. m_tss.gs = ds;
  592. m_tss.ss = ss;
  593. m_tss.cs = cs;
  594. }
  595. m_tss.cr3 = page_directory().cr3();
  596. if (is_ring0()) {
  597. // FIXME: This memory is leaked.
  598. // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
  599. dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
  600. m_stack_top0 = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
  601. m_tss.esp = m_stack_top0;
  602. } else {
  603. if (fork_parent) {
  604. m_stack_top3 = fork_parent->m_stack_top3;
  605. } else {
  606. auto* region = allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
  607. ASSERT(region);
  608. m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
  609. m_tss.esp = m_stack_top3;
  610. }
  611. }
  612. if (is_ring3()) {
  613. // Ring3 processes need a separate stack for Ring0.
  614. m_kernel_stack = kmalloc(default_kernel_stack_size);
  615. m_stack_top0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
  616. m_tss.ss0 = 0x10;
  617. m_tss.esp0 = m_stack_top0;
  618. }
  619. // HACK: Ring2 SS in the TSS is the current PID.
  620. m_tss.ss2 = m_pid;
  621. m_far_ptr.offset = 0x98765432;
  622. }
  623. Process::~Process()
  624. {
  625. InterruptDisabler disabler;
  626. system.nprocess--;
  627. if (g_last_fpu_process == this)
  628. g_last_fpu_process = nullptr;
  629. if (selector())
  630. gdt_free_entry(selector());
  631. if (m_kernel_stack) {
  632. kfree(m_kernel_stack);
  633. m_kernel_stack = nullptr;
  634. }
  635. }
  636. void Process::dump_regions()
  637. {
  638. kprintf("Process %s(%u) regions:\n", name().characters(), pid());
  639. kprintf("BEGIN END SIZE NAME\n");
  640. for (auto& region : m_regions) {
  641. kprintf("%x -- %x %x %s\n",
  642. region->laddr().get(),
  643. region->laddr().offset(region->size() - 1).get(),
  644. region->size(),
  645. region->name().characters());
  646. }
  647. }
  648. void Process::sys$exit(int status)
  649. {
  650. cli();
  651. #ifdef TASK_DEBUG
  652. kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
  653. #endif
  654. m_termination_status = status;
  655. m_termination_signal = 0;
  656. die();
  657. ASSERT_NOT_REACHED();
  658. }
  659. void Process::terminate_due_to_signal(byte signal)
  660. {
  661. ASSERT_INTERRUPTS_DISABLED();
  662. ASSERT(signal < 32);
  663. dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  664. m_termination_status = 0;
  665. m_termination_signal = signal;
  666. die();
  667. }
  668. void Process::send_signal(byte signal, Process* sender)
  669. {
  670. ASSERT_INTERRUPTS_DISABLED();
  671. ASSERT(signal < 32);
  672. m_pending_signals |= 1 << signal;
  673. if (sender)
  674. dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid());
  675. else
  676. dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, name().characters(), pid());
  677. }
  678. bool Process::has_unmasked_pending_signals() const
  679. {
  680. return m_pending_signals & m_signal_mask;
  681. }
  682. ShouldUnblockProcess Process::dispatch_one_pending_signal()
  683. {
  684. ASSERT_INTERRUPTS_DISABLED();
  685. dword signal_candidates = m_pending_signals & m_signal_mask;
  686. ASSERT(signal_candidates);
  687. byte signal = 0;
  688. for (; signal < 32; ++signal) {
  689. if (signal_candidates & (1 << signal)) {
  690. break;
  691. }
  692. }
  693. return dispatch_signal(signal);
  694. }
  695. ShouldUnblockProcess Process::dispatch_signal(byte signal)
  696. {
  697. ASSERT_INTERRUPTS_DISABLED();
  698. ASSERT(signal < 32);
  699. dbgprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
  700. auto& action = m_signal_action_data[signal];
  701. // FIXME: Implement SA_SIGINFO signal handlers.
  702. ASSERT(!(action.flags & SA_SIGINFO));
  703. // Mark this signal as handled.
  704. m_pending_signals &= ~(1 << signal);
  705. auto handler_laddr = action.handler_or_sigaction;
  706. if (handler_laddr.is_null()) {
  707. // FIXME: Is termination really always the appropriate action?
  708. terminate_due_to_signal(signal);
  709. return ShouldUnblockProcess::No;
  710. }
  711. if (handler_laddr.as_ptr() == SIG_IGN) {
  712. dbgprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
  713. return ShouldUnblockProcess::Yes;
  714. }
  715. Scheduler::prepare_to_modify_tss(*this);
  716. word ret_cs = m_tss.cs;
  717. dword ret_eip = m_tss.eip;
  718. dword ret_eflags = m_tss.eflags;
  719. bool interrupting_in_kernel = (ret_cs & 3) == 0;
  720. if (interrupting_in_kernel) {
  721. dbgprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
  722. ASSERT(is_blocked());
  723. m_tss_to_resume_kernel = m_tss;
  724. #ifdef SIGNAL_DEBUG
  725. dbgprintf("resume tss pc: %w:%x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip);
  726. #endif
  727. }
  728. ProcessPagingScope paging_scope(*this);
  729. if (interrupting_in_kernel) {
  730. if (!m_signal_stack_user_region) {
  731. m_signal_stack_user_region = allocate_region(LinearAddress(), default_userspace_stack_size, "signal stack (user)");
  732. ASSERT(m_signal_stack_user_region);
  733. m_signal_stack_kernel_region = allocate_region(LinearAddress(), default_userspace_stack_size, "signal stack (kernel)");
  734. ASSERT(m_signal_stack_user_region);
  735. }
  736. m_tss.ss = 0x23;
  737. m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get() & 0xfffffff8;
  738. m_tss.ss0 = 0x10;
  739. m_tss.esp0 = m_signal_stack_kernel_region->laddr().offset(default_userspace_stack_size).get() & 0xfffffff8;
  740. push_value_on_stack(ret_eflags);
  741. push_value_on_stack(ret_cs);
  742. push_value_on_stack(ret_eip);
  743. } else {
  744. push_value_on_stack(ret_cs);
  745. push_value_on_stack(ret_eip);
  746. push_value_on_stack(ret_eflags);
  747. }
  748. // PUSHA
  749. dword old_esp = m_tss.esp;
  750. push_value_on_stack(m_tss.eax);
  751. push_value_on_stack(m_tss.ecx);
  752. push_value_on_stack(m_tss.edx);
  753. push_value_on_stack(m_tss.ebx);
  754. push_value_on_stack(old_esp);
  755. push_value_on_stack(m_tss.ebp);
  756. push_value_on_stack(m_tss.esi);
  757. push_value_on_stack(m_tss.edi);
  758. m_tss.eax = (dword)signal;
  759. m_tss.cs = 0x1b;
  760. m_tss.ds = 0x23;
  761. m_tss.es = 0x23;
  762. m_tss.fs = 0x23;
  763. m_tss.gs = 0x23;
  764. m_tss.eip = handler_laddr.get();
  765. if (m_return_to_ring3_from_signal_trampoline.is_null()) {
  766. // FIXME: This should be a global trampoline shared by all processes, not one created per process!
  767. // FIXME: Remap as read-only after setup.
  768. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true);
  769. m_return_to_ring3_from_signal_trampoline = region->laddr();
  770. byte* code_ptr = m_return_to_ring3_from_signal_trampoline.as_ptr();
  771. *code_ptr++ = 0x61; // popa
  772. *code_ptr++ = 0x9d; // popf
  773. *code_ptr++ = 0xc3; // ret
  774. *code_ptr++ = 0x0f; // ud2
  775. *code_ptr++ = 0x0b;
  776. m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr);
  777. *code_ptr++ = 0x61; // popa
  778. *code_ptr++ = 0xb8; // mov eax, <dword>
  779. *(dword*)code_ptr = Syscall::SC_sigreturn;
  780. code_ptr += sizeof(dword);
  781. *code_ptr++ = 0xcd; // int 0x80
  782. *code_ptr++ = 0x80;
  783. *code_ptr++ = 0x0f; // ud2
  784. *code_ptr++ = 0x0b;
  785. // FIXME: For !SA_NODEFER, maybe we could do something like emitting an int 0x80 syscall here that
  786. // unmasks the signal so it can be received again? I guess then I would need one trampoline
  787. // per signal number if it's hard-coded, but it's just a few bytes per each.
  788. }
  789. if (interrupting_in_kernel)
  790. push_value_on_stack(m_return_to_ring0_from_signal_trampoline.get());
  791. else
  792. push_value_on_stack(m_return_to_ring3_from_signal_trampoline.get());
  793. // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
  794. set_state(Skip1SchedulerPass);
  795. #ifdef SIGNAL_DEBUG
  796. dbgprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
  797. #endif
  798. return ShouldUnblockProcess::Yes;
  799. }
  800. void Process::sys$sigreturn()
  801. {
  802. InterruptDisabler disabler;
  803. Scheduler::prepare_to_modify_tss(*this);
  804. m_tss = m_tss_to_resume_kernel;
  805. #ifdef SIGNAL_DEBUG
  806. dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid());
  807. dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip);
  808. #endif
  809. set_state(Skip1SchedulerPass);
  810. Scheduler::yield();
  811. kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid());
  812. ASSERT_NOT_REACHED();
  813. }
  814. void Process::push_value_on_stack(dword value)
  815. {
  816. m_tss.esp -= 4;
  817. dword* stack_ptr = (dword*)m_tss.esp;
  818. *stack_ptr = value;
  819. }
  820. void Process::crash()
  821. {
  822. ASSERT_INTERRUPTS_DISABLED();
  823. ASSERT(is_ring3());
  824. ASSERT(state() != Dead);
  825. m_termination_signal = SIGSEGV;
  826. dump_regions();
  827. die();
  828. ASSERT_NOT_REACHED();
  829. }
  830. Process* Process::from_pid(pid_t pid)
  831. {
  832. ASSERT_INTERRUPTS_DISABLED();
  833. for (auto* process = g_processes->head(); process; process = process->next()) {
  834. if (process->pid() == pid)
  835. return process;
  836. }
  837. return nullptr;
  838. }
  839. FileDescriptor* Process::file_descriptor(int fd)
  840. {
  841. if (fd < 0)
  842. return nullptr;
  843. if ((size_t)fd < m_fds.size())
  844. return m_fds[fd].descriptor.ptr();
  845. return nullptr;
  846. }
  847. const FileDescriptor* Process::file_descriptor(int fd) const
  848. {
  849. if (fd < 0)
  850. return nullptr;
  851. if ((size_t)fd < m_fds.size())
  852. return m_fds[fd].descriptor.ptr();
  853. return nullptr;
  854. }
  855. ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size)
  856. {
  857. if (!validate_write(buffer, size))
  858. return -EFAULT;
  859. auto* descriptor = file_descriptor(fd);
  860. if (!descriptor)
  861. return -EBADF;
  862. return descriptor->get_dir_entries((byte*)buffer, size);
  863. }
  864. int Process::sys$lseek(int fd, off_t offset, int whence)
  865. {
  866. auto* descriptor = file_descriptor(fd);
  867. if (!descriptor)
  868. return -EBADF;
  869. return descriptor->seek(offset, whence);
  870. }
  871. int Process::sys$ttyname_r(int fd, char* buffer, size_t size)
  872. {
  873. if (!validate_write(buffer, size))
  874. return -EFAULT;
  875. auto* descriptor = file_descriptor(fd);
  876. if (!descriptor)
  877. return -EBADF;
  878. if (!descriptor->is_tty())
  879. return -ENOTTY;
  880. auto tty_name = descriptor->tty()->tty_name();
  881. if (size < tty_name.length() + 1)
  882. return -ERANGE;
  883. strcpy(buffer, tty_name.characters());
  884. return 0;
  885. }
  886. int Process::sys$ptsname_r(int fd, char* buffer, size_t size)
  887. {
  888. if (!validate_write(buffer, size))
  889. return -EFAULT;
  890. auto* descriptor = file_descriptor(fd);
  891. if (!descriptor)
  892. return -EBADF;
  893. auto* master_pty = descriptor->master_pty();
  894. if (!master_pty)
  895. return -ENOTTY;
  896. auto pts_name = master_pty->pts_name();
  897. if (size < pts_name.length() + 1)
  898. return -ERANGE;
  899. strcpy(buffer, pts_name.characters());
  900. return 0;
  901. }
  902. ssize_t Process::sys$write(int fd, const void* data, size_t size)
  903. {
  904. if (!validate_read(data, size))
  905. return -EFAULT;
  906. #ifdef DEBUG_IO
  907. dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size);
  908. #endif
  909. auto* descriptor = file_descriptor(fd);
  910. if (!descriptor)
  911. return -EBADF;
  912. ssize_t nwritten = 0;
  913. if (descriptor->is_blocking()) {
  914. while (nwritten < (ssize_t)size) {
  915. #ifdef IO_DEBUG
  916. dbgprintf("while %u < %u\n", nwritten, size);
  917. #endif
  918. if (!descriptor->can_write(*this)) {
  919. #ifdef IO_DEBUG
  920. dbgprintf("block write on %d\n", fd);
  921. #endif
  922. m_blocked_fd = fd;
  923. block(BlockedWrite);
  924. Scheduler::yield();
  925. }
  926. ssize_t rc = descriptor->write(*this, (const byte*)data + nwritten, size - nwritten);
  927. #ifdef IO_DEBUG
  928. dbgprintf(" -> write returned %d\n", rc);
  929. #endif
  930. if (rc < 0) {
  931. // FIXME: Support returning partial nwritten with errno.
  932. ASSERT(nwritten == 0);
  933. return rc;
  934. }
  935. if (rc == 0)
  936. break;
  937. if (has_unmasked_pending_signals()) {
  938. block(BlockedSignal);
  939. Scheduler::yield();
  940. if (nwritten == 0)
  941. return -EINTR;
  942. }
  943. nwritten += rc;
  944. }
  945. } else {
  946. nwritten = descriptor->write(*this, (const byte*)data, size);
  947. }
  948. if (has_unmasked_pending_signals()) {
  949. block(BlockedSignal);
  950. Scheduler::yield();
  951. if (nwritten == 0)
  952. return -EINTR;
  953. }
  954. #ifdef DEBUG_IO
  955. dbgprintf("%s(%u) sys$write: nwritten=%u\n", name().characters(), pid(), nwritten);
  956. #endif
  957. return nwritten;
  958. }
  959. ssize_t Process::sys$read(int fd, void* outbuf, size_t nread)
  960. {
  961. if (!validate_write(outbuf, nread))
  962. return -EFAULT;
  963. #ifdef DEBUG_IO
  964. dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, outbuf, nread);
  965. #endif
  966. auto* descriptor = file_descriptor(fd);
  967. if (!descriptor)
  968. return -EBADF;
  969. #ifdef DEBUG_IO
  970. dbgprintf(" > descriptor:%p, is_blocking:%u, can_read:%u\n", descriptor, descriptor->is_blocking(), descriptor->can_read(*this));
  971. dbgprintf(" > inode:K%x, device:K%x\n", descriptor->inode(), descriptor->character_device());
  972. #endif
  973. if (descriptor->is_blocking()) {
  974. if (!descriptor->can_read(*this)) {
  975. m_blocked_fd = fd;
  976. block(BlockedRead);
  977. Scheduler::yield();
  978. if (m_was_interrupted_while_blocked)
  979. return -EINTR;
  980. }
  981. }
  982. nread = descriptor->read(*this, (byte*)outbuf, nread);
  983. #ifdef DEBUG_IO
  984. dbgprintf("%s(%u) Process::sys$read: nread=%u\n", name().characters(), pid(), nread);
  985. #endif
  986. return nread;
  987. }
  988. int Process::sys$close(int fd)
  989. {
  990. auto* descriptor = file_descriptor(fd);
  991. if (!descriptor)
  992. return -EBADF;
  993. int rc = descriptor->close();
  994. m_fds[fd] = { };
  995. return rc;
  996. }
  997. int Process::sys$utime(const char* pathname, const utimbuf* buf)
  998. {
  999. if (!validate_read_str(pathname))
  1000. return -EFAULT;
  1001. if (buf && !validate_read_typed(buf))
  1002. return -EFAULT;
  1003. String path(pathname);
  1004. int error;
  1005. auto descriptor = VFS::the().open(move(path), error, 0, 0, *cwd_inode());
  1006. if (!descriptor)
  1007. return error;
  1008. auto& inode = *descriptor->inode();
  1009. if (inode.fs().is_readonly())
  1010. return -EROFS;
  1011. time_t atime;
  1012. time_t mtime;
  1013. if (buf) {
  1014. atime = buf->actime;
  1015. mtime = buf->modtime;
  1016. } else {
  1017. auto now = RTC::now();
  1018. mtime = now;
  1019. atime = now;
  1020. }
  1021. inode.set_atime(atime);
  1022. inode.set_mtime(mtime);
  1023. return 0;
  1024. }
  1025. int Process::sys$access(const char* pathname, int mode)
  1026. {
  1027. (void) mode;
  1028. if (!validate_read_str(pathname))
  1029. return -EFAULT;
  1030. ASSERT_NOT_REACHED();
  1031. }
  1032. int Process::sys$fcntl(int fd, int cmd, dword arg)
  1033. {
  1034. (void) cmd;
  1035. (void) arg;
  1036. dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg);
  1037. auto* descriptor = file_descriptor(fd);
  1038. if (!descriptor)
  1039. return -EBADF;
  1040. // NOTE: The FD flags are not shared between FileDescriptor objects.
  1041. // This means that dup() doesn't copy the FD_CLOEXEC flag!
  1042. switch (cmd) {
  1043. case F_DUPFD: {
  1044. int arg_fd = (int)arg;
  1045. if (arg_fd < 0)
  1046. return -EINVAL;
  1047. int new_fd = -1;
  1048. for (int i = arg_fd; i < (int)m_max_open_file_descriptors; ++i) {
  1049. if (!m_fds[i]) {
  1050. new_fd = i;
  1051. break;
  1052. }
  1053. }
  1054. if (new_fd == -1)
  1055. return -EMFILE;
  1056. m_fds[new_fd].set(descriptor);
  1057. break;
  1058. }
  1059. case F_GETFD:
  1060. return m_fds[fd].flags;
  1061. case F_SETFD:
  1062. m_fds[fd].flags = arg;
  1063. break;
  1064. case F_GETFL:
  1065. return descriptor->file_flags();
  1066. case F_SETFL:
  1067. // FIXME: Support changing O_NONBLOCK
  1068. descriptor->set_file_flags(arg);
  1069. break;
  1070. default:
  1071. ASSERT_NOT_REACHED();
  1072. }
  1073. return 0;
  1074. }
  1075. int Process::sys$fstat(int fd, stat* statbuf)
  1076. {
  1077. if (!validate_write_typed(statbuf))
  1078. return -EFAULT;
  1079. auto* descriptor = file_descriptor(fd);
  1080. if (!descriptor)
  1081. return -EBADF;
  1082. return descriptor->fstat(statbuf);
  1083. }
  1084. int Process::sys$lstat(const char* path, stat* statbuf)
  1085. {
  1086. if (!validate_write_typed(statbuf))
  1087. return -EFAULT;
  1088. int error;
  1089. auto descriptor = VFS::the().open(move(path), error, O_NOFOLLOW_NOERROR | O_DONT_OPEN_DEVICE, 0, *cwd_inode());
  1090. if (!descriptor)
  1091. return error;
  1092. return descriptor->fstat(statbuf);
  1093. }
  1094. int Process::sys$stat(const char* path, stat* statbuf)
  1095. {
  1096. if (!validate_write_typed(statbuf))
  1097. return -EFAULT;
  1098. int error;
  1099. auto descriptor = VFS::the().open(move(path), error, O_DONT_OPEN_DEVICE, 0, *cwd_inode());
  1100. if (!descriptor)
  1101. return error;
  1102. return descriptor->fstat(statbuf);
  1103. }
  1104. int Process::sys$readlink(const char* path, char* buffer, size_t size)
  1105. {
  1106. if (!validate_read_str(path))
  1107. return -EFAULT;
  1108. if (!validate_write(buffer, size))
  1109. return -EFAULT;
  1110. int error;
  1111. auto descriptor = VFS::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, 0, *cwd_inode());
  1112. if (!descriptor)
  1113. return error;
  1114. if (!descriptor->metadata().is_symlink())
  1115. return -EINVAL;
  1116. auto contents = descriptor->read_entire_file(*this);
  1117. if (!contents)
  1118. return -EIO; // FIXME: Get a more detailed error from VFS.
  1119. memcpy(buffer, contents.pointer(), min(size, contents.size()));
  1120. if (contents.size() + 1 < size)
  1121. buffer[contents.size()] = '\0';
  1122. return 0;
  1123. }
  1124. int Process::sys$chdir(const char* path)
  1125. {
  1126. if (!validate_read_str(path))
  1127. return -EFAULT;
  1128. int error;
  1129. auto descriptor = VFS::the().open(path, error, 0, 0, *cwd_inode());
  1130. if (!descriptor)
  1131. return error;
  1132. if (!descriptor->is_directory())
  1133. return -ENOTDIR;
  1134. m_cwd = descriptor->inode();
  1135. return 0;
  1136. }
  1137. int Process::sys$getcwd(char* buffer, size_t size)
  1138. {
  1139. if (!validate_write(buffer, size))
  1140. return -EFAULT;
  1141. ASSERT(cwd_inode());
  1142. auto path = VFS::the().absolute_path(*cwd_inode());
  1143. if (path.is_null())
  1144. return -EINVAL;
  1145. if (size < path.length() + 1)
  1146. return -ERANGE;
  1147. strcpy(buffer, path.characters());
  1148. return 0;
  1149. }
  1150. size_t Process::number_of_open_file_descriptors() const
  1151. {
  1152. size_t count = 0;
  1153. for (auto& descriptor : m_fds) {
  1154. if (descriptor)
  1155. ++count;
  1156. }
  1157. return count;
  1158. }
  1159. int Process::sys$open(const char* path, int options, mode_t mode)
  1160. {
  1161. #ifdef DEBUG_IO
  1162. dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path);
  1163. #endif
  1164. if (!validate_read_str(path))
  1165. return -EFAULT;
  1166. if (number_of_open_file_descriptors() >= m_max_open_file_descriptors)
  1167. return -EMFILE;
  1168. int error = -EWHYTHO;
  1169. ASSERT(cwd_inode());
  1170. auto descriptor = VFS::the().open(path, error, options, mode, *cwd_inode());
  1171. if (!descriptor)
  1172. return error;
  1173. if (options & O_DIRECTORY && !descriptor->is_directory())
  1174. return -ENOTDIR; // FIXME: This should be handled by VFS::open.
  1175. if (options & O_NONBLOCK)
  1176. descriptor->set_blocking(false);
  1177. int fd = 0;
  1178. for (; fd < (int)m_max_open_file_descriptors; ++fd) {
  1179. if (!m_fds[fd])
  1180. break;
  1181. }
  1182. dword flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0;
  1183. m_fds[fd].set(move(descriptor), flags);
  1184. return fd;
  1185. }
  1186. int Process::alloc_fd()
  1187. {
  1188. int fd = -1;
  1189. for (int i = 0; i < (int)m_max_open_file_descriptors; ++i) {
  1190. if (!m_fds[i]) {
  1191. fd = i;
  1192. break;
  1193. }
  1194. }
  1195. return fd;
  1196. }
  1197. int Process::sys$pipe(int pipefd[2])
  1198. {
  1199. if (!validate_write_typed(pipefd))
  1200. return -EFAULT;
  1201. if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors())
  1202. return -EMFILE;
  1203. auto fifo = FIFO::create();
  1204. int reader_fd = alloc_fd();
  1205. m_fds[reader_fd].set(FileDescriptor::create_pipe_reader(*fifo));
  1206. pipefd[0] = reader_fd;
  1207. int writer_fd = alloc_fd();
  1208. m_fds[writer_fd].set(FileDescriptor::create_pipe_writer(*fifo));
  1209. pipefd[1] = writer_fd;
  1210. return 0;
  1211. }
  1212. int Process::sys$killpg(int pgrp, int signum)
  1213. {
  1214. if (signum < 1 || signum >= 32)
  1215. return -EINVAL;
  1216. (void) pgrp;
  1217. ASSERT_NOT_REACHED();
  1218. }
  1219. int Process::sys$setuid(uid_t)
  1220. {
  1221. ASSERT_NOT_REACHED();
  1222. }
  1223. int Process::sys$setgid(gid_t)
  1224. {
  1225. ASSERT_NOT_REACHED();
  1226. }
  1227. unsigned Process::sys$alarm(unsigned seconds)
  1228. {
  1229. (void) seconds;
  1230. ASSERT_NOT_REACHED();
  1231. }
  1232. int Process::sys$uname(utsname* buf)
  1233. {
  1234. if (!validate_write_typed(buf))
  1235. return -EFAULT;
  1236. strcpy(buf->sysname, "Serenity");
  1237. strcpy(buf->release, "1.0-dev");
  1238. strcpy(buf->version, "FIXME");
  1239. strcpy(buf->machine, "i386");
  1240. LOCKER(*s_hostname_lock);
  1241. strncpy(buf->nodename, s_hostname->characters(), sizeof(utsname::nodename));
  1242. return 0;
  1243. }
  1244. int Process::sys$isatty(int fd)
  1245. {
  1246. auto* descriptor = file_descriptor(fd);
  1247. if (!descriptor)
  1248. return -EBADF;
  1249. if (!descriptor->is_tty())
  1250. return -ENOTTY;
  1251. return 1;
  1252. }
  1253. int Process::sys$kill(pid_t pid, int signal)
  1254. {
  1255. if (pid == 0) {
  1256. // FIXME: Send to same-group processes.
  1257. ASSERT(pid != 0);
  1258. }
  1259. if (pid == -1) {
  1260. // FIXME: Send to all processes.
  1261. ASSERT(pid != -1);
  1262. }
  1263. ASSERT(pid != current->pid()); // FIXME: Support this scenario.
  1264. InterruptDisabler disabler;
  1265. auto* peer = Process::from_pid(pid);
  1266. if (!peer)
  1267. return -ESRCH;
  1268. peer->send_signal(signal, this);
  1269. return 0;
  1270. }
  1271. int Process::sys$usleep(useconds_t usec)
  1272. {
  1273. if (!usec)
  1274. return 0;
  1275. sleep(usec / 1000);
  1276. if (m_wakeup_time > system.uptime) {
  1277. ASSERT(m_was_interrupted_while_blocked);
  1278. dword ticks_left_until_original_wakeup_time = m_wakeup_time - system.uptime;
  1279. return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
  1280. }
  1281. return 0;
  1282. }
  1283. int Process::sys$sleep(unsigned seconds)
  1284. {
  1285. if (!seconds)
  1286. return 0;
  1287. sleep(seconds * TICKS_PER_SECOND);
  1288. if (m_wakeup_time > system.uptime) {
  1289. ASSERT(m_was_interrupted_while_blocked);
  1290. dword ticks_left_until_original_wakeup_time = m_wakeup_time - system.uptime;
  1291. return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND;
  1292. }
  1293. return 0;
  1294. }
  1295. int Process::sys$gettimeofday(timeval* tv)
  1296. {
  1297. if (!validate_write_typed(tv))
  1298. return -EFAULT;
  1299. InterruptDisabler disabler;
  1300. auto now = RTC::now();
  1301. tv->tv_sec = now;
  1302. tv->tv_usec = PIT::ticks_since_boot() % 1000;
  1303. return 0;
  1304. }
  1305. uid_t Process::sys$getuid()
  1306. {
  1307. return m_uid;
  1308. }
  1309. gid_t Process::sys$getgid()
  1310. {
  1311. return m_gid;
  1312. }
  1313. uid_t Process::sys$geteuid()
  1314. {
  1315. return m_euid;
  1316. }
  1317. gid_t Process::sys$getegid()
  1318. {
  1319. return m_egid;
  1320. }
  1321. pid_t Process::sys$getpid()
  1322. {
  1323. return m_pid;
  1324. }
  1325. pid_t Process::sys$getppid()
  1326. {
  1327. return m_ppid;
  1328. }
  1329. mode_t Process::sys$umask(mode_t mask)
  1330. {
  1331. auto old_mask = m_umask;
  1332. m_umask = mask;
  1333. return old_mask;
  1334. }
  1335. int Process::reap(Process& process)
  1336. {
  1337. InterruptDisabler disabler;
  1338. int exit_status = (process.m_termination_status << 8) | process.m_termination_signal;
  1339. if (process.ppid()) {
  1340. auto* parent = Process::from_pid(process.ppid());
  1341. if (parent) {
  1342. parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children;
  1343. parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children;
  1344. }
  1345. }
  1346. dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), to_string(process.state()));
  1347. ASSERT(process.state() == Dead);
  1348. g_processes->remove(&process);
  1349. delete &process;
  1350. return exit_status;
  1351. }
  1352. pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options)
  1353. {
  1354. dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options);
  1355. // FIXME: Respect options
  1356. (void) options;
  1357. if (wstatus)
  1358. if (!validate_write_typed(wstatus))
  1359. return -EFAULT;
  1360. int dummy_wstatus;
  1361. int& exit_status = wstatus ? *wstatus : dummy_wstatus;
  1362. {
  1363. InterruptDisabler disabler;
  1364. if (waitee != -1 && !Process::from_pid(waitee))
  1365. return -ECHILD;
  1366. }
  1367. if (options & WNOHANG) {
  1368. if (waitee == -1) {
  1369. pid_t reaped_pid = 0;
  1370. InterruptDisabler disabler;
  1371. for_each_child([&reaped_pid, &exit_status] (Process& process) {
  1372. if (process.state() == Dead) {
  1373. reaped_pid = process.pid();
  1374. exit_status = reap(process);
  1375. }
  1376. return true;
  1377. });
  1378. return reaped_pid;
  1379. } else {
  1380. ASSERT(waitee > 0); // FIXME: Implement other PID specs.
  1381. auto* waitee_process = Process::from_pid(waitee);
  1382. if (!waitee_process)
  1383. return -ECHILD;
  1384. if (waitee_process->state() == Dead) {
  1385. exit_status = reap(*waitee_process);
  1386. return waitee;
  1387. }
  1388. return 0;
  1389. }
  1390. }
  1391. m_waitee_pid = waitee;
  1392. block(BlockedWait);
  1393. Scheduler::yield();
  1394. if (m_was_interrupted_while_blocked)
  1395. return -EINTR;
  1396. Process* waitee_process;
  1397. {
  1398. InterruptDisabler disabler;
  1399. // NOTE: If waitee was -1, m_waitee will have been filled in by the scheduler.
  1400. waitee_process = Process::from_pid(m_waitee_pid);
  1401. }
  1402. ASSERT(waitee_process);
  1403. exit_status = reap(*waitee_process);
  1404. return m_waitee_pid;
  1405. }
  1406. void Process::unblock()
  1407. {
  1408. if (current == this) {
  1409. system.nblocked--;
  1410. m_state = Process::Running;
  1411. return;
  1412. }
  1413. ASSERT(m_state != Process::Runnable && m_state != Process::Running);
  1414. system.nblocked--;
  1415. m_state = Process::Runnable;
  1416. }
  1417. void Process::block(Process::State new_state)
  1418. {
  1419. if (state() != Process::Running) {
  1420. kprintf("Process::block: %s(%u) block(%u/%s) with state=%u/%s\n", name().characters(), pid(), new_state, to_string(new_state), state(), to_string(state()));
  1421. }
  1422. ASSERT(state() == Process::Running);
  1423. system.nblocked++;
  1424. m_was_interrupted_while_blocked = false;
  1425. set_state(new_state);
  1426. }
  1427. void block(Process::State state)
  1428. {
  1429. current->block(state);
  1430. Scheduler::yield();
  1431. }
  1432. void sleep(dword ticks)
  1433. {
  1434. ASSERT(current->state() == Process::Running);
  1435. current->set_wakeup_time(system.uptime + ticks);
  1436. current->block(Process::BlockedSleep);
  1437. Scheduler::yield();
  1438. }
  1439. static bool check_kernel_memory_access(LinearAddress laddr, bool is_write)
  1440. {
  1441. auto* kernel_elf_header = (Elf32_Ehdr*)0xf000;
  1442. auto* kernel_program_headers = (Elf32_Phdr*)(0xf000 + kernel_elf_header->e_phoff);
  1443. for (unsigned i = 0; i < kernel_elf_header->e_phnum; ++i) {
  1444. auto& segment = kernel_program_headers[i];
  1445. if (laddr.get() < segment.p_vaddr || laddr.get() > (segment.p_vaddr + segment.p_memsz))
  1446. continue;
  1447. if (is_write && !(kernel_program_headers[i].p_flags & PF_W))
  1448. return false;
  1449. if (!is_write && !(kernel_program_headers[i].p_flags & PF_R))
  1450. return false;
  1451. return true;
  1452. }
  1453. // Returning true in this case means "it's not inside the kernel binary. let the other checks deal with it."
  1454. return true;
  1455. }
  1456. bool Process::validate_read_from_kernel(LinearAddress laddr) const
  1457. {
  1458. // We check extra carefully here since the first 4MB of the address space is identity-mapped.
  1459. // This code allows access outside of the known used address ranges to get caught.
  1460. InterruptDisabler disabler;
  1461. if (check_kernel_memory_access(laddr, false))
  1462. return true;
  1463. if (is_kmalloc_address(laddr.as_ptr()))
  1464. return true;
  1465. return validate_read(laddr.as_ptr(), 1);
  1466. }
  1467. bool Process::validate_read(const void* address, size_t size) const
  1468. {
  1469. if (is_ring0()) {
  1470. if (check_kernel_memory_access(LinearAddress((dword)address), false))
  1471. return true;
  1472. if (is_kmalloc_address(address))
  1473. return true;
  1474. }
  1475. ASSERT(size);
  1476. if (!size)
  1477. return false;
  1478. LinearAddress first_address((dword)address);
  1479. LinearAddress last_address = first_address.offset(size - 1);
  1480. if (first_address.page_base() != last_address.page_base()) {
  1481. if (!MM.validate_user_read(*this, last_address))
  1482. return false;
  1483. }
  1484. return MM.validate_user_read(*this, first_address);
  1485. }
  1486. bool Process::validate_write(void* address, size_t size) const
  1487. {
  1488. if (is_ring0()) {
  1489. if (is_kmalloc_address(address))
  1490. return true;
  1491. if (check_kernel_memory_access(LinearAddress((dword)address), true))
  1492. return true;
  1493. }
  1494. ASSERT(size);
  1495. if (!size)
  1496. return false;
  1497. LinearAddress first_address((dword)address);
  1498. LinearAddress last_address = first_address.offset(size - 1);
  1499. if (first_address.page_base() != last_address.page_base()) {
  1500. if (!MM.validate_user_write(*this, last_address))
  1501. return false;
  1502. }
  1503. return MM.validate_user_write(*this, last_address);
  1504. }
  1505. pid_t Process::sys$getsid(pid_t pid)
  1506. {
  1507. if (pid == 0)
  1508. return m_sid;
  1509. InterruptDisabler disabler;
  1510. auto* process = Process::from_pid(pid);
  1511. if (!process)
  1512. return -ESRCH;
  1513. if (m_sid != process->m_sid)
  1514. return -EPERM;
  1515. return process->m_sid;
  1516. }
  1517. pid_t Process::sys$setsid()
  1518. {
  1519. InterruptDisabler disabler;
  1520. bool found_process_with_same_pgid_as_my_pid = false;
  1521. Process::for_each_in_pgrp(pid(), [&] (auto&) {
  1522. found_process_with_same_pgid_as_my_pid = true;
  1523. return false;
  1524. });
  1525. if (found_process_with_same_pgid_as_my_pid)
  1526. return -EPERM;
  1527. m_sid = m_pid;
  1528. m_pgid = m_pid;
  1529. return m_sid;
  1530. }
  1531. pid_t Process::sys$getpgid(pid_t pid)
  1532. {
  1533. if (pid == 0)
  1534. return m_pgid;
  1535. InterruptDisabler disabler; // FIXME: Use a ProcessHandle
  1536. auto* process = Process::from_pid(pid);
  1537. if (!process)
  1538. return -ESRCH;
  1539. return process->m_pgid;
  1540. }
  1541. pid_t Process::sys$getpgrp()
  1542. {
  1543. return m_pgid;
  1544. }
  1545. static pid_t get_sid_from_pgid(pid_t pgid)
  1546. {
  1547. InterruptDisabler disabler;
  1548. auto* group_leader = Process::from_pid(pgid);
  1549. if (!group_leader)
  1550. return -1;
  1551. return group_leader->sid();
  1552. }
  1553. int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid)
  1554. {
  1555. InterruptDisabler disabler; // FIXME: Use a ProcessHandle
  1556. pid_t pid = specified_pid ? specified_pid : m_pid;
  1557. if (specified_pgid < 0)
  1558. return -EINVAL;
  1559. auto* process = Process::from_pid(pid);
  1560. if (!process)
  1561. return -ESRCH;
  1562. pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid;
  1563. pid_t current_sid = get_sid_from_pgid(process->m_pgid);
  1564. pid_t new_sid = get_sid_from_pgid(new_pgid);
  1565. if (current_sid != new_sid) {
  1566. // Can't move a process between sessions.
  1567. return -EPERM;
  1568. }
  1569. // FIXME: There are more EPERM conditions to check for here..
  1570. process->m_pgid = new_pgid;
  1571. return 0;
  1572. }
  1573. int Process::sys$ioctl(int fd, unsigned request, unsigned arg)
  1574. {
  1575. auto* descriptor = file_descriptor(fd);
  1576. if (!descriptor)
  1577. return -EBADF;
  1578. if (!descriptor->is_character_device())
  1579. return -ENOTTY;
  1580. return descriptor->character_device()->ioctl(*this, request, arg);
  1581. }
  1582. int Process::sys$getdtablesize()
  1583. {
  1584. return m_max_open_file_descriptors;
  1585. }
  1586. int Process::sys$dup(int old_fd)
  1587. {
  1588. auto* descriptor = file_descriptor(old_fd);
  1589. if (!descriptor)
  1590. return -EBADF;
  1591. if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
  1592. return -EMFILE;
  1593. int new_fd = 0;
  1594. for (; new_fd < (int)m_max_open_file_descriptors; ++new_fd) {
  1595. if (!m_fds[new_fd])
  1596. break;
  1597. }
  1598. m_fds[new_fd].set(descriptor);
  1599. return new_fd;
  1600. }
  1601. int Process::sys$dup2(int old_fd, int new_fd)
  1602. {
  1603. auto* descriptor = file_descriptor(old_fd);
  1604. if (!descriptor)
  1605. return -EBADF;
  1606. if (number_of_open_file_descriptors() == m_max_open_file_descriptors)
  1607. return -EMFILE;
  1608. m_fds[new_fd].set(descriptor);
  1609. return new_fd;
  1610. }
  1611. int Process::sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set)
  1612. {
  1613. if (old_set) {
  1614. if (!validate_read_typed(old_set))
  1615. return -EFAULT;
  1616. *old_set = m_signal_mask;
  1617. }
  1618. if (set) {
  1619. if (!validate_read_typed(set))
  1620. return -EFAULT;
  1621. switch (how) {
  1622. case SIG_BLOCK:
  1623. m_signal_mask &= ~(*set);
  1624. break;
  1625. case SIG_UNBLOCK:
  1626. m_signal_mask |= *set;
  1627. break;
  1628. case SIG_SETMASK:
  1629. m_signal_mask = *set;
  1630. break;
  1631. default:
  1632. return -EINVAL;
  1633. }
  1634. }
  1635. return 0;
  1636. }
  1637. int Process::sys$sigpending(sigset_t* set)
  1638. {
  1639. if (!validate_read_typed(set))
  1640. return -EFAULT;
  1641. *set = m_pending_signals;
  1642. return 0;
  1643. }
  1644. void Process::set_default_signal_dispositions()
  1645. {
  1646. // FIXME: Set up all the right default actions. See signal(7).
  1647. memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
  1648. m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
  1649. }
  1650. int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act)
  1651. {
  1652. if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP)
  1653. return -EINVAL;
  1654. if (!validate_read_typed(act))
  1655. return -EFAULT;
  1656. InterruptDisabler disabler; // FIXME: This should use a narrower lock.
  1657. auto& action = m_signal_action_data[signum];
  1658. if (old_act) {
  1659. if (!validate_write_typed(old_act))
  1660. return -EFAULT;
  1661. old_act->sa_flags = action.flags;
  1662. old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get();
  1663. old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get();
  1664. }
  1665. action.restorer = LinearAddress((dword)act->sa_restorer);
  1666. action.flags = act->sa_flags;
  1667. action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction);
  1668. return 0;
  1669. }
  1670. int Process::sys$getgroups(int count, gid_t* gids)
  1671. {
  1672. if (count < 0)
  1673. return -EINVAL;
  1674. ASSERT(m_gids.size() < MAX_PROCESS_GIDS);
  1675. if (!count)
  1676. return m_gids.size();
  1677. if (count != (int)m_gids.size())
  1678. return -EINVAL;
  1679. if (!validate_write_typed(gids, m_gids.size()))
  1680. return -EFAULT;
  1681. size_t i = 0;
  1682. for (auto gid : m_gids)
  1683. gids[i++] = gid;
  1684. return 0;
  1685. }
  1686. int Process::sys$setgroups(size_t count, const gid_t* gids)
  1687. {
  1688. if (!is_root())
  1689. return -EPERM;
  1690. if (count >= MAX_PROCESS_GIDS)
  1691. return -EINVAL;
  1692. if (!validate_read(gids, count))
  1693. return -EFAULT;
  1694. m_gids.clear();
  1695. m_gids.set(m_gid);
  1696. for (size_t i = 0; i < count; ++i)
  1697. m_gids.set(gids[i]);
  1698. return 0;
  1699. }
  1700. int Process::sys$mkdir(const char* pathname, mode_t mode)
  1701. {
  1702. if (!validate_read_str(pathname))
  1703. return -EFAULT;
  1704. size_t pathname_length = strlen(pathname);
  1705. if (pathname_length == 0)
  1706. return -EINVAL;
  1707. if (pathname_length >= 255)
  1708. return -ENAMETOOLONG;
  1709. int error;
  1710. if (!VFS::the().mkdir(String(pathname, pathname_length), mode, *cwd_inode(), error))
  1711. return error;
  1712. return 0;
  1713. }
  1714. clock_t Process::sys$times(tms* times)
  1715. {
  1716. if (!validate_write_typed(times))
  1717. return -EFAULT;
  1718. times->tms_utime = m_ticks_in_user;
  1719. times->tms_stime = m_ticks_in_kernel;
  1720. times->tms_cutime = m_ticks_in_user_for_dead_children;
  1721. times->tms_cstime = m_ticks_in_kernel_for_dead_children;
  1722. return 0;
  1723. }
  1724. int Process::sys$select(const Syscall::SC_select_params* params)
  1725. {
  1726. if (!validate_read_typed(params))
  1727. return -EFAULT;
  1728. if (params->writefds && !validate_read_typed(params->writefds))
  1729. return -EFAULT;
  1730. if (params->readfds && !validate_read_typed(params->readfds))
  1731. return -EFAULT;
  1732. if (params->exceptfds && !validate_read_typed(params->exceptfds))
  1733. return -EFAULT;
  1734. if (params->timeout && !validate_read_typed(params->timeout))
  1735. return -EFAULT;
  1736. int nfds = params->nfds;
  1737. fd_set* writefds = params->writefds;
  1738. fd_set* readfds = params->readfds;
  1739. fd_set* exceptfds = params->exceptfds;
  1740. auto* timeout = params->timeout;
  1741. // FIXME: Implement exceptfds support.
  1742. ASSERT(!exceptfds);
  1743. if (timeout) {
  1744. m_select_timeout = *timeout;
  1745. m_select_has_timeout = true;
  1746. } else {
  1747. m_select_has_timeout = false;
  1748. }
  1749. if (nfds < 0)
  1750. return -EINVAL;
  1751. // FIXME: Return -EINTR if a signal is caught.
  1752. // FIXME: Return -EINVAL if timeout is invalid.
  1753. auto transfer_fds = [this, nfds] (fd_set* set, auto& vector) -> int {
  1754. if (!set)
  1755. return 0;
  1756. vector.clear_with_capacity();
  1757. auto bitmap = Bitmap::wrap((byte*)set, FD_SETSIZE);
  1758. for (int i = 0; i < nfds; ++i) {
  1759. if (bitmap.get(i)) {
  1760. if (!file_descriptor(i))
  1761. return -EBADF;
  1762. vector.append(i);
  1763. }
  1764. }
  1765. return 0;
  1766. };
  1767. int error = 0;
  1768. error = transfer_fds(writefds, m_select_write_fds);
  1769. if (error)
  1770. return error;
  1771. error = transfer_fds(readfds, m_select_read_fds);
  1772. if (error)
  1773. return error;
  1774. #ifdef DEBUG_IO
  1775. dbgprintf("%s<%u> selecting on (read:%u, write:%u), wakeup_req:%u, timeout=%p\n", name().characters(), pid(), m_select_read_fds.size(), m_select_write_fds.size(), m_wakeup_requested, timeout);
  1776. #endif
  1777. if (!m_wakeup_requested && (!timeout || (timeout->tv_sec || timeout->tv_usec))) {
  1778. block(BlockedSelect);
  1779. Scheduler::yield();
  1780. }
  1781. m_wakeup_requested = false;
  1782. int markedfds = 0;
  1783. if (readfds) {
  1784. memset(readfds, 0, sizeof(fd_set));
  1785. auto bitmap = Bitmap::wrap((byte*)readfds, FD_SETSIZE);
  1786. for (int fd : m_select_read_fds) {
  1787. auto* descriptor = file_descriptor(fd);
  1788. if (!descriptor)
  1789. continue;
  1790. if (descriptor->can_read(*this)) {
  1791. bitmap.set(fd, true);
  1792. ++markedfds;
  1793. }
  1794. }
  1795. }
  1796. if (writefds) {
  1797. memset(writefds, 0, sizeof(fd_set));
  1798. auto bitmap = Bitmap::wrap((byte*)writefds, FD_SETSIZE);
  1799. for (int fd : m_select_write_fds) {
  1800. auto* descriptor = file_descriptor(fd);
  1801. if (!descriptor)
  1802. continue;
  1803. if (descriptor->can_write(*this)) {
  1804. bitmap.set(fd, true);
  1805. ++markedfds;
  1806. }
  1807. }
  1808. }
  1809. return markedfds;
  1810. }
  1811. int Process::sys$poll(pollfd* fds, int nfds, int timeout)
  1812. {
  1813. if (!validate_read_typed(fds))
  1814. return -EFAULT;
  1815. m_select_write_fds.clear_with_capacity();
  1816. m_select_read_fds.clear_with_capacity();
  1817. for (int i = 0; i < nfds; ++i) {
  1818. if (fds[i].events & POLLIN)
  1819. m_select_read_fds.append(fds[i].fd);
  1820. if (fds[i].events & POLLOUT)
  1821. m_select_write_fds.append(fds[i].fd);
  1822. }
  1823. if (!m_wakeup_requested && timeout < 0) {
  1824. block(BlockedSelect);
  1825. Scheduler::yield();
  1826. }
  1827. m_wakeup_requested = false;
  1828. int fds_with_revents = 0;
  1829. for (int i = 0; i < nfds; ++i) {
  1830. auto* descriptor = file_descriptor(fds[i].fd);
  1831. if (!descriptor) {
  1832. fds[i].revents = POLLNVAL;
  1833. continue;
  1834. }
  1835. fds[i].revents = 0;
  1836. if (fds[i].events & POLLIN && descriptor->can_read(*this))
  1837. fds[i].revents |= POLLIN;
  1838. if (fds[i].events & POLLOUT && descriptor->can_write(*this))
  1839. fds[i].revents |= POLLOUT;
  1840. if (fds[i].revents)
  1841. ++fds_with_revents;
  1842. }
  1843. return fds_with_revents;
  1844. }
  1845. Inode* Process::cwd_inode()
  1846. {
  1847. // FIXME: This is retarded factoring.
  1848. if (!m_cwd)
  1849. m_cwd = VFS::the().root_inode();
  1850. return m_cwd.ptr();
  1851. }
  1852. int Process::sys$unlink(const char* pathname)
  1853. {
  1854. if (!validate_read_str(pathname))
  1855. return -EFAULT;
  1856. int error;
  1857. if (!VFS::the().unlink(String(pathname), *cwd_inode(), error))
  1858. return error;
  1859. return 0;
  1860. }
  1861. int Process::sys$rmdir(const char* pathname)
  1862. {
  1863. if (!validate_read_str(pathname))
  1864. return -EFAULT;
  1865. int error;
  1866. if (!VFS::the().rmdir(String(pathname), *cwd_inode(), error))
  1867. return error;
  1868. return 0;
  1869. }
  1870. int Process::sys$read_tsc(dword* lsw, dword* msw)
  1871. {
  1872. if (!validate_write_typed(lsw))
  1873. return -EFAULT;
  1874. if (!validate_write_typed(msw))
  1875. return -EFAULT;
  1876. read_tsc(*lsw, *msw);
  1877. return 0;
  1878. }
  1879. int Process::sys$chmod(const char* pathname, mode_t mode)
  1880. {
  1881. if (!validate_read_str(pathname))
  1882. return -EFAULT;
  1883. int error;
  1884. if (!VFS::the().chmod(String(pathname), mode, *cwd_inode(), error))
  1885. return error;
  1886. return 0;
  1887. }
  1888. void Process::finalize()
  1889. {
  1890. ASSERT(current == g_finalizer);
  1891. destroy_all_windows();
  1892. m_fds.clear();
  1893. m_tty = nullptr;
  1894. {
  1895. InterruptDisabler disabler;
  1896. if (auto* parent_process = Process::from_pid(m_ppid)) {
  1897. parent_process->send_signal(SIGCHLD, this);
  1898. }
  1899. }
  1900. set_state(Dead);
  1901. }
  1902. void Process::die()
  1903. {
  1904. set_state(Dying);
  1905. if (!Scheduler::is_active())
  1906. Scheduler::pick_next_and_switch_now();
  1907. }
  1908. size_t Process::amount_virtual() const
  1909. {
  1910. size_t amount = 0;
  1911. for (auto& region : m_regions) {
  1912. amount += region->size();
  1913. }
  1914. return amount;
  1915. }
  1916. size_t Process::amount_in_bitmaps() const
  1917. {
  1918. size_t amount = 0;
  1919. for (auto& region : m_regions) {
  1920. if (region->is_bitmap())
  1921. amount += region->size();
  1922. }
  1923. return amount;
  1924. }
  1925. size_t Process::amount_resident() const
  1926. {
  1927. // FIXME: This will double count if multiple regions use the same physical page.
  1928. size_t amount = 0;
  1929. for (auto& region : m_regions) {
  1930. amount += region->amount_resident();
  1931. }
  1932. return amount;
  1933. }
  1934. size_t Process::amount_shared() const
  1935. {
  1936. // FIXME: This will double count if multiple regions use the same physical page.
  1937. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage retain counts,
  1938. // and each PhysicalPage is only retained by its VMObject. This needs to be refactored
  1939. // so that every Region contributes +1 retain to each of its PhysicalPages.
  1940. size_t amount = 0;
  1941. for (auto& region : m_regions) {
  1942. amount += region->amount_shared();
  1943. }
  1944. return amount;
  1945. }
  1946. void Process::finalize_dying_processes()
  1947. {
  1948. Vector<Process*> dying_processes;
  1949. {
  1950. InterruptDisabler disabler;
  1951. dying_processes.ensure_capacity(system.nprocess);
  1952. for (auto* process = g_processes->head(); process; process = process->next()) {
  1953. if (process->state() == Process::Dying)
  1954. dying_processes.append(process);
  1955. }
  1956. }
  1957. for (auto* process : dying_processes)
  1958. process->finalize();
  1959. }