MP3Loader.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892
  1. /*
  2. * Copyright (c) 2021, Arne Elster <arne@elster.li>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include "MP3Loader.h"
  7. #include "MP3HuffmanTables.h"
  8. #include "MP3Tables.h"
  9. #include "MP3Types.h"
  10. #include <AK/Endian.h>
  11. #include <AK/FixedArray.h>
  12. #include <LibCore/File.h>
  13. namespace Audio {
  14. DSP::MDCT<12> MP3LoaderPlugin::s_mdct_12;
  15. DSP::MDCT<36> MP3LoaderPlugin::s_mdct_36;
  16. MP3LoaderPlugin::MP3LoaderPlugin(NonnullOwnPtr<SeekableStream> stream)
  17. : LoaderPlugin(move(stream))
  18. {
  19. }
  20. bool MP3LoaderPlugin::sniff(SeekableStream& stream)
  21. {
  22. auto maybe_bit_stream = try_make<BigEndianInputBitStream>(MaybeOwned<Stream>(stream));
  23. if (maybe_bit_stream.is_error())
  24. return false;
  25. auto bit_stream = maybe_bit_stream.release_value();
  26. auto synchronization_result = synchronize(*bit_stream, 0);
  27. if (synchronization_result.is_error())
  28. return false;
  29. auto maybe_mp3 = stream.read_value<BigEndian<u16>>();
  30. if (maybe_mp3.is_error())
  31. return false;
  32. ErrorOr<int> id = bit_stream->read_bit();
  33. if (id.is_error() || id.value() != 1)
  34. return false;
  35. auto raw_layer = bit_stream->read_bits(2);
  36. if (raw_layer.is_error())
  37. return false;
  38. auto layer = MP3::Tables::LayerNumberLookup[raw_layer.value()];
  39. return layer == 3;
  40. }
  41. ErrorOr<NonnullOwnPtr<LoaderPlugin>, LoaderError> MP3LoaderPlugin::create(NonnullOwnPtr<SeekableStream> stream)
  42. {
  43. auto loader = make<MP3LoaderPlugin>(move(stream));
  44. TRY(loader->initialize());
  45. return loader;
  46. }
  47. MaybeLoaderError MP3LoaderPlugin::initialize()
  48. {
  49. m_bitstream = TRY(try_make<BigEndianInputBitStream>(MaybeOwned<Stream>(*m_stream)));
  50. TRY(synchronize());
  51. auto header = TRY(read_header());
  52. if (header.id != 1 || header.layer != 3)
  53. return LoaderError { LoaderError::Category::Format, "Only MPEG-1 layer 3 supported." };
  54. m_sample_rate = header.samplerate;
  55. m_num_channels = header.channel_count();
  56. m_loaded_samples = 0;
  57. TRY(build_seek_table());
  58. TRY(m_stream->seek(0, SeekMode::SetPosition));
  59. return {};
  60. }
  61. MaybeLoaderError MP3LoaderPlugin::reset()
  62. {
  63. TRY(seek(0));
  64. m_current_frame = {};
  65. m_synthesis_buffer = {};
  66. m_loaded_samples = 0;
  67. TRY(m_bit_reservoir.discard(m_bit_reservoir.used_buffer_size()));
  68. m_bitstream->align_to_byte_boundary();
  69. return {};
  70. }
  71. MaybeLoaderError MP3LoaderPlugin::seek(int const position)
  72. {
  73. auto seek_entry = m_seek_table.seek_point_before(position);
  74. if (seek_entry.has_value()) {
  75. TRY(m_stream->seek(seek_entry->byte_offset, SeekMode::SetPosition));
  76. m_loaded_samples = seek_entry->sample_index;
  77. }
  78. m_current_frame = {};
  79. m_synthesis_buffer = {};
  80. TRY(m_bit_reservoir.discard(m_bit_reservoir.used_buffer_size()));
  81. m_bitstream->align_to_byte_boundary();
  82. return {};
  83. }
  84. ErrorOr<Vector<FixedArray<Sample>>, LoaderError> MP3LoaderPlugin::load_chunks(size_t samples_to_read_from_input)
  85. {
  86. int samples_to_read = samples_to_read_from_input;
  87. Vector<FixedArray<Sample>> frames;
  88. while (samples_to_read > 0) {
  89. FixedArray<Sample> samples = TRY(FixedArray<Sample>::create(MP3::frame_size));
  90. if (!m_current_frame.has_value()) {
  91. auto maybe_frame = read_next_frame();
  92. if (maybe_frame.is_error()) {
  93. if (m_stream->is_eof()) {
  94. return Vector<FixedArray<Sample>> {};
  95. }
  96. return maybe_frame.release_error();
  97. }
  98. m_current_frame = maybe_frame.release_value();
  99. if (!m_current_frame.has_value())
  100. break;
  101. }
  102. bool const is_stereo = m_current_frame->header.channel_count() == 2;
  103. size_t current_frame_read = 0;
  104. for (; current_frame_read < MP3::granule_size; current_frame_read++) {
  105. auto const left_sample = m_current_frame->channels[0].granules[0].pcm[current_frame_read / 32][current_frame_read % 32];
  106. auto const right_sample = is_stereo ? m_current_frame->channels[1].granules[0].pcm[current_frame_read / 32][current_frame_read % 32] : left_sample;
  107. samples[current_frame_read] = Sample { left_sample, right_sample };
  108. samples_to_read--;
  109. }
  110. for (; current_frame_read < MP3::frame_size; current_frame_read++) {
  111. auto const left_sample = m_current_frame->channels[0].granules[1].pcm[(current_frame_read - MP3::granule_size) / 32][(current_frame_read - MP3::granule_size) % 32];
  112. auto const right_sample = is_stereo ? m_current_frame->channels[1].granules[1].pcm[(current_frame_read - MP3::granule_size) / 32][(current_frame_read - MP3::granule_size) % 32] : left_sample;
  113. samples[current_frame_read] = Sample { left_sample, right_sample };
  114. samples_to_read--;
  115. }
  116. m_loaded_samples += samples.size();
  117. TRY(frames.try_append(move(samples)));
  118. m_current_frame = {};
  119. }
  120. return frames;
  121. }
  122. MaybeLoaderError MP3LoaderPlugin::build_seek_table()
  123. {
  124. int sample_count = 0;
  125. size_t frame_count = 0;
  126. m_seek_table = {};
  127. m_bitstream->align_to_byte_boundary();
  128. while (!synchronize().is_error()) {
  129. auto const frame_pos = -2 + TRY(m_stream->seek(0, SeekMode::FromCurrentPosition));
  130. auto error_or_header = read_header();
  131. if (error_or_header.is_error() || error_or_header.value().id != 1 || error_or_header.value().layer != 3) {
  132. continue;
  133. }
  134. if (frame_count % 10 == 0)
  135. TRY(m_seek_table.insert_seek_point({ static_cast<u64>(sample_count), frame_pos }));
  136. frame_count++;
  137. sample_count += MP3::frame_size;
  138. TRY(m_stream->seek(error_or_header.value().frame_size - 6, SeekMode::FromCurrentPosition));
  139. // TODO: This is just here to clear the bitstream buffer.
  140. // Bitstream should have a method to sync its state to the underlying stream.
  141. m_bitstream->align_to_byte_boundary();
  142. }
  143. m_total_samples = sample_count;
  144. return {};
  145. }
  146. ErrorOr<MP3::Header, LoaderError> MP3LoaderPlugin::read_header()
  147. {
  148. MP3::Header header;
  149. header.id = TRY(m_bitstream->read_bit());
  150. header.layer = MP3::Tables::LayerNumberLookup[TRY(m_bitstream->read_bits(2))];
  151. if (header.layer <= 0)
  152. return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame header contains invalid layer number." };
  153. header.protection_bit = TRY(m_bitstream->read_bit());
  154. header.bitrate = MP3::Tables::BitratesPerLayerLookup[header.layer - 1][TRY(m_bitstream->read_bits(4))];
  155. if (header.bitrate <= 0)
  156. return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame header contains invalid bitrate." };
  157. header.samplerate = MP3::Tables::SampleratesLookup[TRY(m_bitstream->read_bits(2))];
  158. if (header.samplerate <= 0)
  159. return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame header contains invalid samplerate." };
  160. header.padding_bit = TRY(m_bitstream->read_bit());
  161. header.private_bit = TRY(m_bitstream->read_bit());
  162. header.mode = static_cast<MP3::Mode>(TRY(m_bitstream->read_bits(2)));
  163. header.mode_extension = static_cast<MP3::ModeExtension>(TRY(m_bitstream->read_bits(2)));
  164. header.copyright_bit = TRY(m_bitstream->read_bit());
  165. header.original_bit = TRY(m_bitstream->read_bit());
  166. header.emphasis = static_cast<MP3::Emphasis>(TRY(m_bitstream->read_bits(2)));
  167. if (!header.protection_bit)
  168. header.crc16 = TRY(m_bitstream->read_bits<u16>(16));
  169. header.frame_size = 144 * header.bitrate * 1000 / header.samplerate + header.padding_bit;
  170. header.slot_count = header.frame_size - ((header.channel_count() == 2 ? 32 : 17) + (header.protection_bit ? 0 : 2) + 4);
  171. return header;
  172. }
  173. MaybeLoaderError MP3LoaderPlugin::synchronize(BigEndianInputBitStream& stream, size_t sample_index)
  174. {
  175. size_t one_counter = 0;
  176. while (one_counter < 12 && !stream.is_eof()) {
  177. bool const bit = TRY(stream.read_bit());
  178. one_counter = bit ? one_counter + 1 : 0;
  179. if (!bit) {
  180. stream.align_to_byte_boundary();
  181. }
  182. }
  183. if (one_counter != 12)
  184. return LoaderError { LoaderError::Category::Format, sample_index, "Failed to synchronize." };
  185. return {};
  186. }
  187. MaybeLoaderError MP3LoaderPlugin::synchronize()
  188. {
  189. return MP3LoaderPlugin::synchronize(*m_bitstream, m_loaded_samples);
  190. }
  191. ErrorOr<MP3::MP3Frame, LoaderError> MP3LoaderPlugin::read_next_frame()
  192. {
  193. // Note: This will spin until we find a correct frame, or we reach eof.
  194. // In the second case, the error will bubble up from read_frame_data().
  195. while (true) {
  196. TRY(synchronize());
  197. MP3::Header header = TRY(read_header());
  198. if (header.id != 1 || header.layer != 3) {
  199. continue;
  200. }
  201. return read_frame_data(header);
  202. }
  203. }
  204. ErrorOr<MP3::MP3Frame, LoaderError> MP3LoaderPlugin::read_frame_data(MP3::Header const& header)
  205. {
  206. MP3::MP3Frame frame { header };
  207. TRY(read_side_information(frame));
  208. auto maybe_buffer = ByteBuffer::create_uninitialized(header.slot_count);
  209. if (maybe_buffer.is_error())
  210. return LoaderError { LoaderError::Category::IO, m_loaded_samples, "Out of memory" };
  211. auto& buffer = maybe_buffer.value();
  212. size_t old_reservoir_size = m_bit_reservoir.used_buffer_size();
  213. TRY(m_bitstream->read_until_filled(buffer));
  214. TRY(m_bit_reservoir.write_until_depleted(buffer));
  215. // If we don't have enough data in the reservoir to process this frame, skip it (but keep the data).
  216. if (old_reservoir_size < static_cast<size_t>(frame.main_data_begin))
  217. return frame;
  218. TRY(m_bit_reservoir.discard(old_reservoir_size - frame.main_data_begin));
  219. BigEndianInputBitStream reservoir_stream { MaybeOwned<Stream>(m_bit_reservoir) };
  220. for (size_t granule_index = 0; granule_index < 2; granule_index++) {
  221. for (size_t channel_index = 0; channel_index < header.channel_count(); channel_index++) {
  222. size_t scale_factor_size = TRY(read_scale_factors(frame, reservoir_stream, granule_index, channel_index));
  223. TRY(read_huffman_data(frame, reservoir_stream, granule_index, channel_index, scale_factor_size));
  224. if (frame.channels[channel_index].granules[granule_index].block_type == MP3::BlockType::Short) {
  225. reorder_samples(frame.channels[channel_index].granules[granule_index], frame.header.samplerate);
  226. // Only reduce alias for lowest 2 bands as they're long.
  227. // Afaik this is not mentioned in the ISO spec, but it is addressed in the
  228. // changelog for the ISO compliance tests.
  229. if (frame.channels[channel_index].granules[granule_index].mixed_block_flag)
  230. reduce_alias(frame.channels[channel_index].granules[granule_index], 36);
  231. } else {
  232. reduce_alias(frame.channels[channel_index].granules[granule_index]);
  233. }
  234. }
  235. if (header.mode == MP3::Mode::JointStereo) {
  236. process_stereo(frame, granule_index);
  237. }
  238. }
  239. for (size_t granule_index = 0; granule_index < 2; granule_index++) {
  240. for (size_t channel_index = 0; channel_index < header.channel_count(); channel_index++) {
  241. auto& granule = frame.channels[channel_index].granules[granule_index];
  242. for (size_t i = 0; i < MP3::granule_size; i += 18) {
  243. MP3::BlockType block_type = granule.block_type;
  244. if (i < 36 && granule.mixed_block_flag) {
  245. // ISO/IEC 11172-3: if mixed_block_flag is set, the lowest two subbands are transformed with normal window.
  246. block_type = MP3::BlockType::Normal;
  247. }
  248. Array<float, 36> output;
  249. transform_samples_to_time(granule.samples, i, output, block_type);
  250. int const subband_index = i / 18;
  251. for (size_t sample_index = 0; sample_index < 18; sample_index++) {
  252. // overlap add
  253. granule.filter_bank_input[subband_index][sample_index] = output[sample_index] + m_last_values[channel_index][subband_index][sample_index];
  254. m_last_values[channel_index][subband_index][sample_index] = output[sample_index + 18];
  255. // frequency inversion
  256. if (subband_index % 2 == 1 && sample_index % 2 == 1)
  257. granule.filter_bank_input[subband_index][sample_index] *= -1;
  258. }
  259. }
  260. }
  261. }
  262. Array<float, 32> in_samples;
  263. for (size_t channel_index = 0; channel_index < frame.header.channel_count(); channel_index++) {
  264. for (size_t granule_index = 0; granule_index < 2; granule_index++) {
  265. auto& granule = frame.channels[channel_index].granules[granule_index];
  266. for (size_t sample_index = 0; sample_index < 18; sample_index++) {
  267. for (size_t band_index = 0; band_index < 32; band_index++) {
  268. in_samples[band_index] = granule.filter_bank_input[band_index][sample_index];
  269. }
  270. synthesis(m_synthesis_buffer[channel_index], in_samples, granule.pcm[sample_index]);
  271. }
  272. }
  273. }
  274. return frame;
  275. }
  276. MaybeLoaderError MP3LoaderPlugin::read_side_information(MP3::MP3Frame& frame)
  277. {
  278. frame.main_data_begin = TRY(m_bitstream->read_bits(9));
  279. if (frame.header.channel_count() == 1) {
  280. frame.private_bits = TRY(m_bitstream->read_bits(5));
  281. } else {
  282. frame.private_bits = TRY(m_bitstream->read_bits(3));
  283. }
  284. for (size_t channel_index = 0; channel_index < frame.header.channel_count(); channel_index++) {
  285. for (size_t scale_factor_selection_info_band = 0; scale_factor_selection_info_band < 4; scale_factor_selection_info_band++) {
  286. frame.channels[channel_index].scale_factor_selection_info[scale_factor_selection_info_band] = TRY(m_bitstream->read_bit());
  287. }
  288. }
  289. for (size_t granule_index = 0; granule_index < 2; granule_index++) {
  290. for (size_t channel_index = 0; channel_index < frame.header.channel_count(); channel_index++) {
  291. auto& granule = frame.channels[channel_index].granules[granule_index];
  292. granule.part_2_3_length = TRY(m_bitstream->read_bits(12));
  293. granule.big_values = TRY(m_bitstream->read_bits(9));
  294. granule.global_gain = TRY(m_bitstream->read_bits(8));
  295. granule.scalefac_compress = TRY(m_bitstream->read_bits(4));
  296. granule.window_switching_flag = TRY(m_bitstream->read_bit());
  297. if (granule.window_switching_flag) {
  298. granule.block_type = static_cast<MP3::BlockType>(TRY(m_bitstream->read_bits(2)));
  299. granule.mixed_block_flag = TRY(m_bitstream->read_bit());
  300. for (size_t region = 0; region < 2; region++)
  301. granule.table_select[region] = TRY(m_bitstream->read_bits(5));
  302. for (size_t window = 0; window < 3; window++)
  303. granule.sub_block_gain[window] = TRY(m_bitstream->read_bits(3));
  304. granule.region0_count = (granule.block_type == MP3::BlockType::Short && !granule.mixed_block_flag) ? 8 : 7;
  305. granule.region1_count = 36;
  306. } else {
  307. for (size_t region = 0; region < 3; region++)
  308. granule.table_select[region] = TRY(m_bitstream->read_bits(5));
  309. granule.region0_count = TRY(m_bitstream->read_bits(4));
  310. granule.region1_count = TRY(m_bitstream->read_bits(3));
  311. }
  312. granule.preflag = TRY(m_bitstream->read_bit());
  313. granule.scalefac_scale = TRY(m_bitstream->read_bit());
  314. granule.count1table_select = TRY(m_bitstream->read_bit());
  315. }
  316. }
  317. return {};
  318. }
  319. // From ISO/IEC 11172-3 (2.4.3.4.7.1)
  320. Array<float, MP3::granule_size> MP3LoaderPlugin::calculate_frame_exponents(MP3::MP3Frame const& frame, size_t granule_index, size_t channel_index)
  321. {
  322. Array<float, MP3::granule_size> exponents;
  323. auto fill_band = [&exponents](float exponent, size_t start, size_t end) {
  324. for (size_t j = start; j <= end; j++) {
  325. exponents[j] = exponent;
  326. }
  327. };
  328. auto const& channel = frame.channels[channel_index];
  329. auto const& granule = frame.channels[channel_index].granules[granule_index];
  330. auto const scale_factor_bands = get_scalefactor_bands(granule, frame.header.samplerate);
  331. float const scale_factor_multiplier = granule.scalefac_scale ? 1 : 0.5;
  332. int const gain = granule.global_gain - 210;
  333. if (granule.block_type != MP3::BlockType::Short) {
  334. for (size_t band_index = 0; band_index < 22; band_index++) {
  335. float const exponent = gain / 4.0f - (scale_factor_multiplier * (channel.scale_factors[band_index] + granule.preflag * MP3::Tables::Pretab[band_index]));
  336. fill_band(AK::pow<float>(2.0, exponent), scale_factor_bands[band_index].start, scale_factor_bands[band_index].end);
  337. }
  338. } else {
  339. size_t band_index = 0;
  340. size_t sample_count = 0;
  341. if (granule.mixed_block_flag) {
  342. while (sample_count < 36) {
  343. float const exponent = gain / 4.0f - (scale_factor_multiplier * (channel.scale_factors[band_index] + granule.preflag * MP3::Tables::Pretab[band_index]));
  344. fill_band(AK::pow<float>(2.0, exponent), scale_factor_bands[band_index].start, scale_factor_bands[band_index].end);
  345. sample_count += scale_factor_bands[band_index].width;
  346. band_index++;
  347. }
  348. }
  349. float const gain0 = (gain - 8 * granule.sub_block_gain[0]) / 4.0;
  350. float const gain1 = (gain - 8 * granule.sub_block_gain[1]) / 4.0;
  351. float const gain2 = (gain - 8 * granule.sub_block_gain[2]) / 4.0;
  352. while (sample_count < MP3::granule_size && band_index < scale_factor_bands.size()) {
  353. float const exponent0 = gain0 - (scale_factor_multiplier * channel.scale_factors[band_index + 0]);
  354. float const exponent1 = gain1 - (scale_factor_multiplier * channel.scale_factors[band_index + 1]);
  355. float const exponent2 = gain2 - (scale_factor_multiplier * channel.scale_factors[band_index + 2]);
  356. fill_band(AK::pow<float>(2.0, exponent0), scale_factor_bands[band_index + 0].start, scale_factor_bands[band_index + 0].end);
  357. sample_count += scale_factor_bands[band_index + 0].width;
  358. fill_band(AK::pow<float>(2.0, exponent1), scale_factor_bands[band_index + 1].start, scale_factor_bands[band_index + 1].end);
  359. sample_count += scale_factor_bands[band_index + 1].width;
  360. fill_band(AK::pow<float>(2.0, exponent2), scale_factor_bands[band_index + 2].start, scale_factor_bands[band_index + 2].end);
  361. sample_count += scale_factor_bands[band_index + 2].width;
  362. band_index += 3;
  363. }
  364. while (sample_count < MP3::granule_size)
  365. exponents[sample_count++] = 0;
  366. }
  367. return exponents;
  368. }
  369. ErrorOr<size_t, LoaderError> MP3LoaderPlugin::read_scale_factors(MP3::MP3Frame& frame, BigEndianInputBitStream& reservoir, size_t granule_index, size_t channel_index)
  370. {
  371. auto& channel = frame.channels[channel_index];
  372. auto const& granule = channel.granules[granule_index];
  373. size_t band_index = 0;
  374. size_t bits_read = 0;
  375. if (granule.window_switching_flag && granule.block_type == MP3::BlockType::Short) {
  376. if (granule.mixed_block_flag) {
  377. for (size_t i = 0; i < 8; i++) {
  378. auto const bits = MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress];
  379. channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
  380. bits_read += bits;
  381. }
  382. for (size_t i = 3; i < 12; i++) {
  383. auto const bits = i <= 5 ? MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress] : MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
  384. channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
  385. channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
  386. channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
  387. bits_read += 3 * bits;
  388. }
  389. } else {
  390. for (size_t i = 0; i < 12; i++) {
  391. auto const bits = i <= 5 ? MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress] : MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
  392. channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
  393. channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
  394. channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
  395. bits_read += 3 * bits;
  396. }
  397. }
  398. channel.scale_factors[band_index++] = 0;
  399. channel.scale_factors[band_index++] = 0;
  400. channel.scale_factors[band_index++] = 0;
  401. } else {
  402. if ((channel.scale_factor_selection_info[0] == 0) || (granule_index == 0)) {
  403. for (band_index = 0; band_index < 6; band_index++) {
  404. auto const bits = MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress];
  405. channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
  406. bits_read += bits;
  407. }
  408. }
  409. if ((channel.scale_factor_selection_info[1] == 0) || (granule_index == 0)) {
  410. for (band_index = 6; band_index < 11; band_index++) {
  411. auto const bits = MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress];
  412. channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
  413. bits_read += bits;
  414. }
  415. }
  416. if ((channel.scale_factor_selection_info[2] == 0) || (granule_index == 0)) {
  417. for (band_index = 11; band_index < 16; band_index++) {
  418. auto const bits = MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
  419. channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
  420. bits_read += bits;
  421. }
  422. }
  423. if ((channel.scale_factor_selection_info[3] == 0) || (granule_index == 0)) {
  424. for (band_index = 16; band_index < 21; band_index++) {
  425. auto const bits = MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
  426. channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
  427. bits_read += bits;
  428. }
  429. }
  430. channel.scale_factors[21] = 0;
  431. }
  432. return bits_read;
  433. }
  434. MaybeLoaderError MP3LoaderPlugin::read_huffman_data(MP3::MP3Frame& frame, BigEndianInputBitStream& reservoir, size_t granule_index, size_t channel_index, size_t granule_bits_read)
  435. {
  436. auto const exponents = calculate_frame_exponents(frame, granule_index, channel_index);
  437. auto& granule = frame.channels[channel_index].granules[granule_index];
  438. auto const scale_factor_bands = get_scalefactor_bands(granule, frame.header.samplerate);
  439. size_t const scale_factor_band_index1 = granule.region0_count + 1;
  440. size_t const scale_factor_band_index2 = min(scale_factor_bands.size() - 1, scale_factor_band_index1 + granule.region1_count + 1);
  441. bool const is_short_granule = granule.window_switching_flag && granule.block_type == MP3::BlockType::Short;
  442. size_t const region1_start = is_short_granule ? 36 : scale_factor_bands[scale_factor_band_index1].start;
  443. size_t const region2_start = is_short_granule ? MP3::granule_size : scale_factor_bands[scale_factor_band_index2].start;
  444. auto requantize = [](int const sample, float const exponent) -> float {
  445. int const sign = sample < 0 ? -1 : 1;
  446. int const magnitude = AK::abs(sample);
  447. return sign * AK::pow<float>(static_cast<float>(magnitude), 4 / 3.0) * exponent;
  448. };
  449. size_t count = 0;
  450. // 2.4.3.4.6: "Decoding is done until all Huffman code bits have been decoded
  451. // or until quantized values representing 576 frequency lines have been decoded,
  452. // whichever comes first."
  453. auto max_count = min(granule.big_values * 2, MP3::granule_size);
  454. for (; count < max_count; count += 2) {
  455. MP3::Tables::Huffman::HuffmanTreeXY const* tree = nullptr;
  456. if (count < region1_start) {
  457. tree = &MP3::Tables::Huffman::HuffmanTreesXY[granule.table_select[0]];
  458. } else if (count < region2_start) {
  459. tree = &MP3::Tables::Huffman::HuffmanTreesXY[granule.table_select[1]];
  460. } else {
  461. tree = &MP3::Tables::Huffman::HuffmanTreesXY[granule.table_select[2]];
  462. }
  463. if (!tree || tree->nodes.is_empty()) {
  464. return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame references invalid huffman table." };
  465. }
  466. // Assumption: There's enough bits to read. 32 is just a placeholder for "unlimited".
  467. // There are no 32 bit long huffman codes in the tables.
  468. auto const entry = MP3::Tables::Huffman::huffman_decode(reservoir, tree->nodes, 32);
  469. granule_bits_read += entry.bits_read;
  470. if (!entry.code.has_value())
  471. return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame contains invalid huffman data." };
  472. int x = entry.code->symbol.x;
  473. int y = entry.code->symbol.y;
  474. if (x == 15 && tree->linbits > 0) {
  475. x += TRY(reservoir.read_bits(tree->linbits));
  476. granule_bits_read += tree->linbits;
  477. }
  478. if (x != 0) {
  479. if (TRY(reservoir.read_bit()))
  480. x = -x;
  481. granule_bits_read++;
  482. }
  483. if (y == 15 && tree->linbits > 0) {
  484. y += TRY(reservoir.read_bits(tree->linbits));
  485. granule_bits_read += tree->linbits;
  486. }
  487. if (y != 0) {
  488. if (TRY(reservoir.read_bit()))
  489. y = -y;
  490. granule_bits_read++;
  491. }
  492. granule.samples[count + 0] = requantize(x, exponents[count + 0]);
  493. granule.samples[count + 1] = requantize(y, exponents[count + 1]);
  494. }
  495. ReadonlySpan<MP3::Tables::Huffman::HuffmanNode<MP3::Tables::Huffman::HuffmanVWXY>> count1table = granule.count1table_select ? MP3::Tables::Huffman::TreeB : MP3::Tables::Huffman::TreeA;
  496. // count1 is not known. We have to read huffman encoded values
  497. // until we've exhausted the granule's bits. We know the size of
  498. // the granule from part2_3_length, which is the number of bits
  499. // used for scalefactors and huffman data (in the granule).
  500. while (granule_bits_read < granule.part_2_3_length && count <= MP3::granule_size - 4) {
  501. auto const entry = MP3::Tables::Huffman::huffman_decode(reservoir, count1table, granule.part_2_3_length - granule_bits_read);
  502. granule_bits_read += entry.bits_read;
  503. if (!entry.code.has_value())
  504. return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame contains invalid huffman data." };
  505. int v = entry.code->symbol.v;
  506. if (v != 0) {
  507. if (granule_bits_read >= granule.part_2_3_length)
  508. break;
  509. if (TRY(reservoir.read_bit()))
  510. v = -v;
  511. granule_bits_read++;
  512. }
  513. int w = entry.code->symbol.w;
  514. if (w != 0) {
  515. if (granule_bits_read >= granule.part_2_3_length)
  516. break;
  517. if (TRY(reservoir.read_bit()))
  518. w = -w;
  519. granule_bits_read++;
  520. }
  521. int x = entry.code->symbol.x;
  522. if (x != 0) {
  523. if (granule_bits_read >= granule.part_2_3_length)
  524. break;
  525. if (TRY(reservoir.read_bit()))
  526. x = -x;
  527. granule_bits_read++;
  528. }
  529. int y = entry.code->symbol.y;
  530. if (y != 0) {
  531. if (granule_bits_read >= granule.part_2_3_length)
  532. break;
  533. if (TRY(reservoir.read_bit()))
  534. y = -y;
  535. granule_bits_read++;
  536. }
  537. granule.samples[count + 0] = requantize(v, exponents[count + 0]);
  538. granule.samples[count + 1] = requantize(w, exponents[count + 1]);
  539. granule.samples[count + 2] = requantize(x, exponents[count + 2]);
  540. granule.samples[count + 3] = requantize(y, exponents[count + 3]);
  541. count += 4;
  542. }
  543. if (granule_bits_read > granule.part_2_3_length) {
  544. return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Read too many bits from bit reservoir." };
  545. }
  546. // 2.4.3.4.6: "If there are more Huffman code bits than necessary to decode 576 values
  547. // they are regarded as stuffing bits and discarded."
  548. for (size_t i = granule_bits_read; i < granule.part_2_3_length; i++) {
  549. TRY(reservoir.read_bit());
  550. }
  551. return {};
  552. }
  553. void MP3LoaderPlugin::reorder_samples(MP3::Granule& granule, u32 sample_rate)
  554. {
  555. float tmp[MP3::granule_size] = {};
  556. size_t band_index = 0;
  557. size_t subband_index = 0;
  558. auto scale_factor_bands = get_scalefactor_bands(granule, sample_rate);
  559. if (granule.mixed_block_flag) {
  560. while (subband_index < 36) {
  561. for (size_t frequency_line_index = 0; frequency_line_index < scale_factor_bands[band_index].width; frequency_line_index++) {
  562. tmp[subband_index] = granule.samples[subband_index];
  563. subband_index++;
  564. }
  565. band_index++;
  566. }
  567. }
  568. while (subband_index < MP3::granule_size && band_index <= 36) {
  569. for (size_t frequency_line_index = 0; frequency_line_index < scale_factor_bands[band_index].width; frequency_line_index++) {
  570. tmp[subband_index++] = granule.samples[scale_factor_bands[band_index + 0].start + frequency_line_index];
  571. tmp[subband_index++] = granule.samples[scale_factor_bands[band_index + 1].start + frequency_line_index];
  572. tmp[subband_index++] = granule.samples[scale_factor_bands[band_index + 2].start + frequency_line_index];
  573. }
  574. band_index += 3;
  575. }
  576. for (size_t i = 0; i < MP3::granule_size; i++)
  577. granule.samples[i] = tmp[i];
  578. }
  579. void MP3LoaderPlugin::reduce_alias(MP3::Granule& granule, size_t max_subband_index)
  580. {
  581. for (size_t subband = 0; subband < max_subband_index - 18; subband += 18) {
  582. for (size_t i = 0; i < 8; i++) {
  583. size_t const idx1 = subband + 17 - i;
  584. size_t const idx2 = subband + 18 + i;
  585. auto const d1 = granule.samples[idx1];
  586. auto const d2 = granule.samples[idx2];
  587. granule.samples[idx1] = d1 * MP3::Tables::AliasReductionCs[i] - d2 * MP3::Tables::AliasReductionCa[i];
  588. granule.samples[idx2] = d2 * MP3::Tables::AliasReductionCs[i] + d1 * MP3::Tables::AliasReductionCa[i];
  589. }
  590. }
  591. }
  592. void MP3LoaderPlugin::process_stereo(MP3::MP3Frame& frame, size_t granule_index)
  593. {
  594. size_t band_index_ms_start = 0;
  595. size_t band_index_ms_end = 0;
  596. size_t band_index_intensity_start = 0;
  597. size_t band_index_intensity_end = 0;
  598. auto& granule_left = frame.channels[0].granules[granule_index];
  599. auto& granule_right = frame.channels[1].granules[granule_index];
  600. auto get_last_nonempty_band = [](Span<float> samples, ReadonlySpan<MP3::Tables::ScaleFactorBand> bands) -> size_t {
  601. size_t last_nonempty_band = 0;
  602. for (size_t i = 0; i < bands.size(); i++) {
  603. bool is_empty = true;
  604. for (size_t l = bands[i].start; l < bands[i].end; l++) {
  605. if (samples[l] != 0) {
  606. is_empty = false;
  607. break;
  608. }
  609. }
  610. if (!is_empty)
  611. last_nonempty_band = i;
  612. }
  613. return last_nonempty_band;
  614. };
  615. auto process_ms_stereo = [&](MP3::Tables::ScaleFactorBand const& band) {
  616. float const SQRT_2 = AK::sqrt(2.0);
  617. for (size_t i = band.start; i <= band.end; i++) {
  618. float const m = granule_left.samples[i];
  619. float const s = granule_right.samples[i];
  620. granule_left.samples[i] = (m + s) / SQRT_2;
  621. granule_right.samples[i] = (m - s) / SQRT_2;
  622. }
  623. };
  624. auto process_intensity_stereo = [&](MP3::Tables::ScaleFactorBand const& band, float intensity_stereo_ratio) {
  625. for (size_t i = band.start; i <= band.end; i++) {
  626. float const sample_left = granule_left.samples[i];
  627. float const coeff_l = intensity_stereo_ratio / (1 + intensity_stereo_ratio);
  628. float const coeff_r = 1 / (1 + intensity_stereo_ratio);
  629. granule_left.samples[i] = sample_left * coeff_l;
  630. granule_right.samples[i] = sample_left * coeff_r;
  631. }
  632. };
  633. auto scale_factor_bands = get_scalefactor_bands(granule_right, frame.header.samplerate);
  634. if (has_flag(frame.header.mode_extension, MP3::ModeExtension::MsStereo)) {
  635. band_index_ms_start = 0;
  636. band_index_ms_end = scale_factor_bands.size();
  637. }
  638. if (has_flag(frame.header.mode_extension, MP3::ModeExtension::IntensityStereo)) {
  639. band_index_intensity_start = get_last_nonempty_band(granule_right.samples, scale_factor_bands);
  640. band_index_intensity_end = scale_factor_bands.size();
  641. band_index_ms_end = band_index_intensity_start;
  642. }
  643. for (size_t band_index = band_index_ms_start; band_index < band_index_ms_end; band_index++) {
  644. process_ms_stereo(scale_factor_bands[band_index]);
  645. }
  646. for (size_t band_index = band_index_intensity_start; band_index < band_index_intensity_end; band_index++) {
  647. auto const intensity_stereo_position = frame.channels[1].scale_factors[band_index];
  648. if (intensity_stereo_position == 7) {
  649. if (has_flag(frame.header.mode_extension, MP3::ModeExtension::MsStereo))
  650. process_ms_stereo(scale_factor_bands[band_index]);
  651. continue;
  652. }
  653. float const intensity_stereo_ratio = AK::tan(intensity_stereo_position * AK::Pi<float> / 12);
  654. process_intensity_stereo(scale_factor_bands[band_index], intensity_stereo_ratio);
  655. }
  656. }
  657. void MP3LoaderPlugin::transform_samples_to_time(Array<float, MP3::granule_size> const& input, size_t input_offset, Array<float, 36>& output, MP3::BlockType block_type)
  658. {
  659. if (block_type == MP3::BlockType::Short) {
  660. size_t const N = 12;
  661. Array<float, N * 3> temp_out;
  662. Array<float, N / 2> temp_in;
  663. for (size_t k = 0; k < N / 2; k++)
  664. temp_in[k] = input[input_offset + 3 * k + 0];
  665. s_mdct_12.transform(temp_in, Span<float>(temp_out).slice(0, N));
  666. for (size_t i = 0; i < N; i++)
  667. temp_out[i + 0] *= MP3::Tables::WindowBlockTypeShort[i];
  668. for (size_t k = 0; k < N / 2; k++)
  669. temp_in[k] = input[input_offset + 3 * k + 1];
  670. s_mdct_12.transform(temp_in, Span<float>(temp_out).slice(12, N));
  671. for (size_t i = 0; i < N; i++)
  672. temp_out[i + 12] *= MP3::Tables::WindowBlockTypeShort[i];
  673. for (size_t k = 0; k < N / 2; k++)
  674. temp_in[k] = input[input_offset + 3 * k + 2];
  675. s_mdct_12.transform(temp_in, Span<float>(temp_out).slice(24, N));
  676. for (size_t i = 0; i < N; i++)
  677. temp_out[i + 24] *= MP3::Tables::WindowBlockTypeShort[i];
  678. Span<float> idmct1 = Span<float>(temp_out).slice(0, 12);
  679. Span<float> idmct2 = Span<float>(temp_out).slice(12, 12);
  680. Span<float> idmct3 = Span<float>(temp_out).slice(24, 12);
  681. for (size_t i = 0; i < 6; i++)
  682. output[i] = 0;
  683. for (size_t i = 6; i < 12; i++)
  684. output[i] = idmct1[i - 6];
  685. for (size_t i = 12; i < 18; i++)
  686. output[i] = idmct1[i - 6] + idmct2[i - 12];
  687. for (size_t i = 18; i < 24; i++)
  688. output[i] = idmct2[i - 12] + idmct3[i - 18];
  689. for (size_t i = 24; i < 30; i++)
  690. output[i] = idmct3[i - 18];
  691. for (size_t i = 30; i < 36; i++)
  692. output[i] = 0;
  693. } else {
  694. s_mdct_36.transform(ReadonlySpan<float>(input).slice(input_offset, 18), output);
  695. for (size_t i = 0; i < 36; i++) {
  696. switch (block_type) {
  697. case MP3::BlockType::Normal:
  698. output[i] *= MP3::Tables::WindowBlockTypeNormal[i];
  699. break;
  700. case MP3::BlockType::Start:
  701. output[i] *= MP3::Tables::WindowBlockTypeStart[i];
  702. break;
  703. case MP3::BlockType::End:
  704. output[i] *= MP3::Tables::WindowBlockTypeEnd[i];
  705. break;
  706. case MP3::BlockType::Short:
  707. VERIFY_NOT_REACHED();
  708. break;
  709. }
  710. }
  711. }
  712. }
  713. // ISO/IEC 11172-3 (Figure A.2)
  714. void MP3LoaderPlugin::synthesis(Array<float, 1024>& V, Array<float, 32>& samples, Array<float, 32>& result)
  715. {
  716. for (size_t i = 1023; i >= 64; i--) {
  717. V[i] = V[i - 64];
  718. }
  719. for (size_t i = 0; i < 64; i++) {
  720. V[i] = 0;
  721. for (size_t k = 0; k < 32; k++) {
  722. float const N = MP3::Tables::SynthesisSubbandFilterCoefficients[i][k];
  723. V[i] += N * samples[k];
  724. }
  725. }
  726. Array<float, 512> U;
  727. for (size_t i = 0; i < 8; i++) {
  728. for (size_t j = 0; j < 32; j++) {
  729. U[i * 64 + j] = V[i * 128 + j];
  730. U[i * 64 + 32 + j] = V[i * 128 + 96 + j];
  731. }
  732. }
  733. Array<float, 512> W;
  734. for (size_t i = 0; i < 512; i++) {
  735. W[i] = U[i] * MP3::Tables::WindowSynthesis[i];
  736. }
  737. for (size_t j = 0; j < 32; j++) {
  738. result[j] = 0;
  739. for (size_t k = 0; k < 16; k++) {
  740. result[j] += W[j + 32 * k];
  741. }
  742. }
  743. }
  744. ReadonlySpan<MP3::Tables::ScaleFactorBand> MP3LoaderPlugin::get_scalefactor_bands(MP3::Granule const& granule, int samplerate)
  745. {
  746. switch (granule.block_type) {
  747. case MP3::BlockType::Short:
  748. switch (samplerate) {
  749. case 32000:
  750. return granule.mixed_block_flag ? MP3::Tables::ScaleFactorBandMixed32000 : MP3::Tables::ScaleFactorBandShort32000;
  751. case 44100:
  752. return granule.mixed_block_flag ? MP3::Tables::ScaleFactorBandMixed44100 : MP3::Tables::ScaleFactorBandShort44100;
  753. case 48000:
  754. return granule.mixed_block_flag ? MP3::Tables::ScaleFactorBandMixed48000 : MP3::Tables::ScaleFactorBandShort48000;
  755. }
  756. break;
  757. case MP3::BlockType::Normal:
  758. [[fallthrough]];
  759. case MP3::BlockType::Start:
  760. [[fallthrough]];
  761. case MP3::BlockType::End:
  762. switch (samplerate) {
  763. case 32000:
  764. return MP3::Tables::ScaleFactorBandLong32000;
  765. case 44100:
  766. return MP3::Tables::ScaleFactorBandLong44100;
  767. case 48000:
  768. return MP3::Tables::ScaleFactorBandLong48000;
  769. }
  770. }
  771. VERIFY_NOT_REACHED();
  772. }
  773. }