Region.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/FileSystem/Inode.h>
  10. #include <Kernel/Panic.h>
  11. #include <Kernel/Process.h>
  12. #include <Kernel/Thread.h>
  13. #include <Kernel/VM/AnonymousVMObject.h>
  14. #include <Kernel/VM/MemoryManager.h>
  15. #include <Kernel/VM/PageDirectory.h>
  16. #include <Kernel/VM/Region.h>
  17. #include <Kernel/VM/SharedInodeVMObject.h>
  18. namespace Kernel {
  19. Region::Region(Range const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  20. : m_range(range)
  21. , m_offset_in_vmobject(offset_in_vmobject)
  22. , m_vmobject(move(vmobject))
  23. , m_name(move(name))
  24. , m_access(access | ((access & 0x7) << 4))
  25. , m_shared(shared)
  26. , m_cacheable(cacheable == Cacheable::Yes)
  27. {
  28. VERIFY(m_range.base().is_page_aligned());
  29. VERIFY(m_range.size());
  30. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  31. m_vmobject->add_region(*this);
  32. MM.register_region(*this);
  33. }
  34. Region::~Region()
  35. {
  36. m_vmobject->remove_region(*this);
  37. // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
  38. // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
  39. // find the address<->region mappings in an invalid state there.
  40. ScopedSpinLock lock(s_mm_lock);
  41. if (m_page_directory) {
  42. unmap(ShouldDeallocateVirtualMemoryRange::Yes);
  43. VERIFY(!m_page_directory);
  44. }
  45. MM.unregister_region(*this);
  46. }
  47. OwnPtr<Region> Region::clone(Process& new_owner)
  48. {
  49. VERIFY(Process::current());
  50. ScopedSpinLock lock(s_mm_lock);
  51. if (m_shared) {
  52. VERIFY(!m_stack);
  53. if (vmobject().is_inode())
  54. VERIFY(vmobject().is_shared_inode());
  55. // Create a new region backed by the same VMObject.
  56. auto region = Region::try_create_user_accessible(
  57. &new_owner, m_range, m_vmobject, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  58. if (!region) {
  59. dbgln("Region::clone: Unable to allocate new Region");
  60. return nullptr;
  61. }
  62. region->set_mmap(m_mmap);
  63. region->set_shared(m_shared);
  64. region->set_syscall_region(is_syscall_region());
  65. return region;
  66. }
  67. if (vmobject().is_inode())
  68. VERIFY(vmobject().is_private_inode());
  69. auto vmobject_clone = vmobject().try_clone();
  70. if (!vmobject_clone)
  71. return {};
  72. // Set up a COW region. The parent (this) region becomes COW as well!
  73. remap();
  74. auto clone_region = Region::try_create_user_accessible(
  75. &new_owner, m_range, vmobject_clone.release_nonnull(), m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  76. if (!clone_region) {
  77. dbgln("Region::clone: Unable to allocate new Region for COW");
  78. return nullptr;
  79. }
  80. if (m_stack) {
  81. VERIFY(is_readable());
  82. VERIFY(is_writable());
  83. VERIFY(vmobject().is_anonymous());
  84. clone_region->set_stack(true);
  85. }
  86. clone_region->set_syscall_region(is_syscall_region());
  87. clone_region->set_mmap(m_mmap);
  88. return clone_region;
  89. }
  90. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  91. {
  92. if (m_vmobject.ptr() == obj.ptr())
  93. return;
  94. m_vmobject->remove_region(*this);
  95. m_vmobject = move(obj);
  96. m_vmobject->add_region(*this);
  97. }
  98. size_t Region::cow_pages() const
  99. {
  100. if (!vmobject().is_anonymous())
  101. return 0;
  102. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  103. }
  104. size_t Region::amount_dirty() const
  105. {
  106. if (!vmobject().is_inode())
  107. return amount_resident();
  108. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  109. }
  110. size_t Region::amount_resident() const
  111. {
  112. size_t bytes = 0;
  113. for (size_t i = 0; i < page_count(); ++i) {
  114. auto* page = physical_page(i);
  115. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  116. bytes += PAGE_SIZE;
  117. }
  118. return bytes;
  119. }
  120. size_t Region::amount_shared() const
  121. {
  122. size_t bytes = 0;
  123. for (size_t i = 0; i < page_count(); ++i) {
  124. auto* page = physical_page(i);
  125. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  126. bytes += PAGE_SIZE;
  127. }
  128. return bytes;
  129. }
  130. OwnPtr<Region> Region::try_create_user_accessible(Process* owner, Range const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  131. {
  132. auto region = adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  133. if (!region)
  134. return nullptr;
  135. if (owner)
  136. region->m_owner = owner->make_weak_ptr();
  137. return region;
  138. }
  139. OwnPtr<Region> Region::try_create_kernel_only(Range const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  140. {
  141. return adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  142. }
  143. bool Region::should_cow(size_t page_index) const
  144. {
  145. if (!vmobject().is_anonymous())
  146. return false;
  147. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  148. }
  149. void Region::set_should_cow(size_t page_index, bool cow)
  150. {
  151. VERIFY(!m_shared);
  152. if (vmobject().is_anonymous())
  153. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  154. }
  155. bool Region::map_individual_page_impl(size_t page_index)
  156. {
  157. VERIFY(m_page_directory->get_lock().own_lock());
  158. auto page_vaddr = vaddr_from_page_index(page_index);
  159. bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
  160. if (is_mmap() && !user_allowed) {
  161. PANIC("About to map mmap'ed page at a kernel address");
  162. }
  163. // NOTE: We have to take the MM lock for PTE's to stay valid while we use them.
  164. ScopedSpinLock mm_locker(s_mm_lock);
  165. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  166. if (!pte)
  167. return false;
  168. auto* page = physical_page(page_index);
  169. if (!page || (!is_readable() && !is_writable())) {
  170. pte->clear();
  171. } else {
  172. pte->set_cache_disabled(!m_cacheable);
  173. pte->set_physical_page_base(page->paddr().get());
  174. pte->set_present(true);
  175. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  176. pte->set_writable(false);
  177. else
  178. pte->set_writable(is_writable());
  179. if (Processor::current().has_feature(CPUFeature::NX))
  180. pte->set_execute_disabled(!is_executable());
  181. pte->set_user_allowed(user_allowed);
  182. }
  183. return true;
  184. }
  185. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  186. {
  187. ScopedSpinLock lock(vmobject().m_lock);
  188. if (!m_page_directory)
  189. return true; // not an error, region may have not yet mapped it
  190. if (!translate_vmobject_page(page_index))
  191. return true; // not an error, region doesn't map this page
  192. ScopedSpinLock page_lock(m_page_directory->get_lock());
  193. VERIFY(physical_page(page_index));
  194. bool success = map_individual_page_impl(page_index);
  195. if (with_flush)
  196. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  197. return success;
  198. }
  199. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  200. {
  201. bool success = true;
  202. auto& vmobject = this->vmobject();
  203. ScopedSpinLock lock(vmobject.m_lock);
  204. if (vmobject.is_shared_by_multiple_regions()) {
  205. vmobject.for_each_region([&](auto& region) {
  206. if (!region.do_remap_vmobject_page(page_index, with_flush))
  207. success = false;
  208. });
  209. } else {
  210. if (!do_remap_vmobject_page(page_index, with_flush))
  211. success = false;
  212. }
  213. return success;
  214. }
  215. void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
  216. {
  217. ScopedSpinLock lock(s_mm_lock);
  218. if (!m_page_directory)
  219. return;
  220. ScopedSpinLock page_lock(m_page_directory->get_lock());
  221. size_t count = page_count();
  222. for (size_t i = 0; i < count; ++i) {
  223. auto vaddr = vaddr_from_page_index(i);
  224. MM.release_pte(*m_page_directory, vaddr, i == count - 1);
  225. }
  226. MM.flush_tlb(m_page_directory, vaddr(), page_count());
  227. if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes) {
  228. if (m_page_directory->range_allocator().contains(range()))
  229. m_page_directory->range_allocator().deallocate(range());
  230. else
  231. m_page_directory->identity_range_allocator().deallocate(range());
  232. }
  233. m_page_directory = nullptr;
  234. }
  235. void Region::set_page_directory(PageDirectory& page_directory)
  236. {
  237. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  238. VERIFY(s_mm_lock.own_lock());
  239. m_page_directory = page_directory;
  240. }
  241. bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  242. {
  243. ScopedSpinLock lock(s_mm_lock);
  244. ScopedSpinLock page_lock(page_directory.get_lock());
  245. // FIXME: Find a better place for this sanity check(?)
  246. if (is_user() && !is_shared()) {
  247. VERIFY(!vmobject().is_shared_inode());
  248. }
  249. set_page_directory(page_directory);
  250. size_t page_index = 0;
  251. while (page_index < page_count()) {
  252. if (!map_individual_page_impl(page_index))
  253. break;
  254. ++page_index;
  255. }
  256. if (page_index > 0) {
  257. if (should_flush_tlb == ShouldFlushTLB::Yes)
  258. MM.flush_tlb(m_page_directory, vaddr(), page_index);
  259. return page_index == page_count();
  260. }
  261. return false;
  262. }
  263. void Region::remap()
  264. {
  265. VERIFY(m_page_directory);
  266. map(*m_page_directory);
  267. }
  268. PageFaultResponse Region::handle_fault(PageFault const& fault)
  269. {
  270. auto page_index_in_region = page_index_from_address(fault.vaddr());
  271. if (fault.type() == PageFault::Type::PageNotPresent) {
  272. if (fault.is_read() && !is_readable()) {
  273. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  274. return PageFaultResponse::ShouldCrash;
  275. }
  276. if (fault.is_write() && !is_writable()) {
  277. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  278. return PageFaultResponse::ShouldCrash;
  279. }
  280. if (vmobject().is_inode()) {
  281. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  282. return handle_inode_fault(page_index_in_region);
  283. }
  284. auto& page_slot = physical_page_slot(page_index_in_region);
  285. if (page_slot->is_lazy_committed_page()) {
  286. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  287. VERIFY(m_vmobject->is_anonymous());
  288. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  289. remap_vmobject_page(page_index_in_vmobject);
  290. return PageFaultResponse::Continue;
  291. }
  292. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  293. return PageFaultResponse::ShouldCrash;
  294. }
  295. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  296. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  297. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  298. auto* phys_page = physical_page(page_index_in_region);
  299. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  300. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  301. return handle_zero_fault(page_index_in_region);
  302. }
  303. return handle_cow_fault(page_index_in_region);
  304. }
  305. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  306. return PageFaultResponse::ShouldCrash;
  307. }
  308. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  309. {
  310. VERIFY_INTERRUPTS_DISABLED();
  311. VERIFY(vmobject().is_anonymous());
  312. auto& page_slot = physical_page_slot(page_index_in_region);
  313. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  314. ScopedSpinLock locker(vmobject().m_lock);
  315. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  316. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  317. if (!remap_vmobject_page(page_index_in_vmobject))
  318. return PageFaultResponse::OutOfMemory;
  319. return PageFaultResponse::Continue;
  320. }
  321. auto current_thread = Thread::current();
  322. if (current_thread != nullptr)
  323. current_thread->did_zero_fault();
  324. if (page_slot->is_lazy_committed_page()) {
  325. VERIFY(m_vmobject->is_anonymous());
  326. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  327. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  328. } else {
  329. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  330. if (page_slot.is_null()) {
  331. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  332. return PageFaultResponse::OutOfMemory;
  333. }
  334. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  335. }
  336. if (!remap_vmobject_page(page_index_in_vmobject)) {
  337. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  338. return PageFaultResponse::OutOfMemory;
  339. }
  340. return PageFaultResponse::Continue;
  341. }
  342. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  343. {
  344. VERIFY_INTERRUPTS_DISABLED();
  345. auto current_thread = Thread::current();
  346. if (current_thread)
  347. current_thread->did_cow_fault();
  348. if (!vmobject().is_anonymous())
  349. return PageFaultResponse::ShouldCrash;
  350. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  351. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  352. if (!remap_vmobject_page(page_index_in_vmobject))
  353. return PageFaultResponse::OutOfMemory;
  354. return response;
  355. }
  356. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  357. {
  358. VERIFY_INTERRUPTS_DISABLED();
  359. VERIFY(vmobject().is_inode());
  360. VERIFY(!s_mm_lock.own_lock());
  361. VERIFY(!g_scheduler_lock.own_lock());
  362. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  363. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  364. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  365. VERIFY(vmobject_physical_page_entry.is_null());
  366. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  367. auto current_thread = Thread::current();
  368. if (current_thread)
  369. current_thread->did_inode_fault();
  370. u8 page_buffer[PAGE_SIZE];
  371. auto& inode = inode_vmobject.inode();
  372. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  373. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  374. if (result.is_error()) {
  375. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  376. return PageFaultResponse::ShouldCrash;
  377. }
  378. auto nread = result.value();
  379. if (nread < PAGE_SIZE) {
  380. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  381. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  382. }
  383. ScopedSpinLock locker(inode_vmobject.m_lock);
  384. if (!vmobject_physical_page_entry.is_null()) {
  385. // Someone else faulted in this page while we were reading from the inode.
  386. // No harm done (other than some duplicate work), remap the page here and return.
  387. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  388. if (!remap_vmobject_page(page_index_in_vmobject))
  389. return PageFaultResponse::OutOfMemory;
  390. return PageFaultResponse::Continue;
  391. }
  392. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  393. if (vmobject_physical_page_entry.is_null()) {
  394. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  395. return PageFaultResponse::OutOfMemory;
  396. }
  397. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  398. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  399. MM.unquickmap_page();
  400. remap_vmobject_page(page_index_in_vmobject);
  401. return PageFaultResponse::Continue;
  402. }
  403. RefPtr<Process> Region::get_owner()
  404. {
  405. return m_owner.strong_ref();
  406. }
  407. }