MathObject.cpp 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Runtime/GlobalObject.h>
  30. #include <LibJS/Runtime/MathObject.h>
  31. #include <math.h>
  32. namespace JS {
  33. MathObject::MathObject(GlobalObject& global_object)
  34. : Object(*global_object.object_prototype())
  35. {
  36. }
  37. void MathObject::initialize(GlobalObject& global_object)
  38. {
  39. Object::initialize(global_object);
  40. u8 attr = Attribute::Writable | Attribute::Configurable;
  41. define_native_function("abs", abs, 1, attr);
  42. define_native_function("random", random, 0, attr);
  43. define_native_function("sqrt", sqrt, 1, attr);
  44. define_native_function("floor", floor, 1, attr);
  45. define_native_function("ceil", ceil, 1, attr);
  46. define_native_function("round", round, 1, attr);
  47. define_native_function("max", max, 2, attr);
  48. define_native_function("min", min, 2, attr);
  49. define_native_function("trunc", trunc, 1, attr);
  50. define_native_function("sin", sin, 1, attr);
  51. define_native_function("cos", cos, 1, attr);
  52. define_native_function("tan", tan, 1, attr);
  53. define_native_function("pow", pow, 2, attr);
  54. define_native_function("exp", exp, 1, attr);
  55. define_native_function("expm1", expm1, 1, attr);
  56. define_native_function("sign", sign, 1, attr);
  57. define_native_function("clz32", clz32, 1, attr);
  58. define_native_function("acosh", acosh, 1, attr);
  59. define_native_function("asinh", asinh, 1, attr);
  60. define_native_function("atanh", atanh, 1, attr);
  61. define_native_function("log1p", log1p, 1, attr);
  62. define_native_function("cbrt", cbrt, 1, attr);
  63. define_property("E", Value(M_E), 0);
  64. define_property("LN2", Value(M_LN2), 0);
  65. define_property("LN10", Value(M_LN10), 0);
  66. define_property("LOG2E", Value(log2(M_E)), 0);
  67. define_property("LOG10E", Value(log10(M_E)), 0);
  68. define_property("PI", Value(M_PI), 0);
  69. define_property("SQRT1_2", Value(M_SQRT1_2), 0);
  70. define_property("SQRT2", Value(M_SQRT2), 0);
  71. define_property(global_object.vm().well_known_symbol_to_string_tag(), js_string(global_object.heap(), "Math"), Attribute::Configurable);
  72. }
  73. MathObject::~MathObject()
  74. {
  75. }
  76. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  77. {
  78. auto number = vm.argument(0).to_number(global_object);
  79. if (vm.exception())
  80. return {};
  81. if (number.is_nan())
  82. return js_nan();
  83. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  84. }
  85. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  86. {
  87. #ifdef __serenity__
  88. double r = (double)arc4random() / (double)UINT32_MAX;
  89. #else
  90. double r = (double)rand() / (double)RAND_MAX;
  91. #endif
  92. return Value(r);
  93. }
  94. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  95. {
  96. auto number = vm.argument(0).to_number(global_object);
  97. if (vm.exception())
  98. return {};
  99. if (number.is_nan())
  100. return js_nan();
  101. return Value(::sqrt(number.as_double()));
  102. }
  103. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  104. {
  105. auto number = vm.argument(0).to_number(global_object);
  106. if (vm.exception())
  107. return {};
  108. if (number.is_nan())
  109. return js_nan();
  110. return Value(::floor(number.as_double()));
  111. }
  112. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  113. {
  114. auto number = vm.argument(0).to_number(global_object);
  115. if (vm.exception())
  116. return {};
  117. if (number.is_nan())
  118. return js_nan();
  119. auto number_double = number.as_double();
  120. if (number_double < 0 && number_double > -1)
  121. return Value(-0.f);
  122. return Value(::ceil(number.as_double()));
  123. }
  124. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  125. {
  126. auto number = vm.argument(0).to_number(global_object);
  127. if (vm.exception())
  128. return {};
  129. if (number.is_nan())
  130. return js_nan();
  131. return Value(::round(number.as_double()));
  132. }
  133. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  134. {
  135. if (!vm.argument_count())
  136. return js_negative_infinity();
  137. auto max = vm.argument(0).to_number(global_object);
  138. if (vm.exception())
  139. return {};
  140. for (size_t i = 1; i < vm.argument_count(); ++i) {
  141. auto cur = vm.argument(i).to_number(global_object);
  142. if (vm.exception())
  143. return {};
  144. max = Value(cur.as_double() > max.as_double() ? cur : max);
  145. }
  146. return max;
  147. }
  148. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  149. {
  150. if (!vm.argument_count())
  151. return js_infinity();
  152. auto min = vm.argument(0).to_number(global_object);
  153. if (vm.exception())
  154. return {};
  155. for (size_t i = 1; i < vm.argument_count(); ++i) {
  156. auto cur = vm.argument(i).to_number(global_object);
  157. if (vm.exception())
  158. return {};
  159. min = Value(cur.as_double() < min.as_double() ? cur : min);
  160. }
  161. return min;
  162. }
  163. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  164. {
  165. auto number = vm.argument(0).to_number(global_object);
  166. if (vm.exception())
  167. return {};
  168. if (number.is_nan())
  169. return js_nan();
  170. if (number.as_double() < 0)
  171. return MathObject::ceil(vm, global_object);
  172. return MathObject::floor(vm, global_object);
  173. }
  174. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  175. {
  176. auto number = vm.argument(0).to_number(global_object);
  177. if (vm.exception())
  178. return {};
  179. if (number.is_nan())
  180. return js_nan();
  181. return Value(::sin(number.as_double()));
  182. }
  183. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  184. {
  185. auto number = vm.argument(0).to_number(global_object);
  186. if (vm.exception())
  187. return {};
  188. if (number.is_nan())
  189. return js_nan();
  190. return Value(::cos(number.as_double()));
  191. }
  192. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  193. {
  194. auto number = vm.argument(0).to_number(global_object);
  195. if (vm.exception())
  196. return {};
  197. if (number.is_nan())
  198. return js_nan();
  199. return Value(::tan(number.as_double()));
  200. }
  201. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  202. {
  203. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  204. }
  205. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  206. {
  207. auto number = vm.argument(0).to_number(global_object);
  208. if (vm.exception())
  209. return {};
  210. if (number.is_nan())
  211. return js_nan();
  212. return Value(::exp(number.as_double()));
  213. }
  214. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  215. {
  216. auto number = vm.argument(0).to_number(global_object);
  217. if (vm.exception())
  218. return {};
  219. if (number.is_nan())
  220. return js_nan();
  221. return Value(::expm1(number.as_double()));
  222. }
  223. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  224. {
  225. auto number = vm.argument(0).to_number(global_object);
  226. if (vm.exception())
  227. return {};
  228. if (number.is_positive_zero())
  229. return Value(0);
  230. if (number.is_negative_zero())
  231. return Value(-0.0);
  232. if (number.as_double() > 0)
  233. return Value(1);
  234. if (number.as_double() < 0)
  235. return Value(-1);
  236. return js_nan();
  237. }
  238. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  239. {
  240. auto number = vm.argument(0).to_number(global_object);
  241. if (vm.exception())
  242. return {};
  243. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  244. return Value(32);
  245. return Value(__builtin_clz((unsigned)number.as_double()));
  246. }
  247. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  248. {
  249. auto number = vm.argument(0).to_number(global_object);
  250. if (vm.exception())
  251. return {};
  252. if (number.as_double() < 1)
  253. return JS::js_nan();
  254. return Value(::acosh(number.as_double()));
  255. }
  256. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  257. {
  258. auto number = vm.argument(0).to_number(global_object);
  259. if (vm.exception())
  260. return {};
  261. return Value(::asinh(number.as_double()));
  262. }
  263. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  264. {
  265. auto number = vm.argument(0).to_number(global_object);
  266. if (vm.exception())
  267. return {};
  268. if (number.as_double() > 1 || number.as_double() < -1)
  269. return JS::js_nan();
  270. return Value(::atanh(number.as_double()));
  271. }
  272. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  273. {
  274. auto number = vm.argument(0).to_number(global_object);
  275. if (vm.exception())
  276. return {};
  277. if (number.as_double() < -1)
  278. return JS::js_nan();
  279. return Value(::log1p(number.as_double()));
  280. }
  281. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  282. {
  283. auto number = vm.argument(0).to_number(global_object);
  284. if (vm.exception())
  285. return {};
  286. return Value(::cbrt(number.as_double()));
  287. }
  288. }