Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/Coredump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/errno_numbers.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinlock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<SpinlockProtected<Process::List>> s_processes;
  44. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  45. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  46. static Singleton<MutexProtected<String>> s_hostname;
  47. MutexProtected<String>& hostname()
  48. {
  49. return *s_hostname;
  50. }
  51. SpinlockProtected<Process::List>& processes()
  52. {
  53. return *s_processes;
  54. }
  55. ProcessID Process::allocate_pid()
  56. {
  57. // Overflow is UB, and negative PIDs wreck havoc.
  58. // TODO: Handle PID overflow
  59. // For example: Use an Atomic<u32>, mask the most significant bit,
  60. // retry if PID is already taken as a PID, taken as a TID,
  61. // takes as a PGID, taken as a SID, or zero.
  62. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  63. }
  64. UNMAP_AFTER_INIT void Process::initialize()
  65. {
  66. g_modules = new HashMap<String, OwnPtr<Module>>;
  67. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  68. // Note: This is called before scheduling is initialized, and before APs are booted.
  69. // So we can "safely" bypass the lock here.
  70. reinterpret_cast<String&>(hostname()) = "courage";
  71. create_signal_trampoline();
  72. }
  73. NonnullRefPtrVector<Process> Process::all_processes()
  74. {
  75. NonnullRefPtrVector<Process> output;
  76. processes().with([&](const auto& list) {
  77. output.ensure_capacity(list.size_slow());
  78. for (const auto& process : list)
  79. output.append(NonnullRefPtr<Process>(process));
  80. });
  81. return output;
  82. }
  83. bool Process::in_group(GroupID gid) const
  84. {
  85. return this->gid() == gid || extra_gids().contains_slow(gid);
  86. }
  87. void Process::kill_threads_except_self()
  88. {
  89. InterruptDisabler disabler;
  90. if (thread_count() <= 1)
  91. return;
  92. auto current_thread = Thread::current();
  93. for_each_thread([&](Thread& thread) {
  94. if (&thread == current_thread)
  95. return;
  96. if (auto state = thread.state(); state == Thread::State::Dead
  97. || state == Thread::State::Dying)
  98. return;
  99. // We need to detach this thread in case it hasn't been joined
  100. thread.detach();
  101. thread.set_should_die();
  102. });
  103. u32 dropped_lock_count = 0;
  104. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  105. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  106. }
  107. void Process::kill_all_threads()
  108. {
  109. for_each_thread([&](Thread& thread) {
  110. // We need to detach this thread in case it hasn't been joined
  111. thread.detach();
  112. thread.set_should_die();
  113. });
  114. }
  115. void Process::register_new(Process& process)
  116. {
  117. // Note: this is essentially the same like process->ref()
  118. RefPtr<Process> new_process = process;
  119. processes().with([&](auto& list) {
  120. list.prepend(process);
  121. });
  122. }
  123. KResultOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, String const& path, UserID uid, GroupID gid, Vector<String> arguments, Vector<String> environment, TTY* tty)
  124. {
  125. auto parts = path.split('/');
  126. if (arguments.is_empty()) {
  127. arguments.append(parts.last());
  128. }
  129. auto process = TRY(Process::try_create(first_thread, parts.take_last(), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  130. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  131. first_thread = nullptr;
  132. return ENOMEM;
  133. }
  134. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  135. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  136. auto setup_description = [&process, &description](int fd) {
  137. process->m_fds.m_fds_metadatas[fd].allocate();
  138. process->m_fds[fd].set(*description);
  139. };
  140. setup_description(0);
  141. setup_description(1);
  142. setup_description(2);
  143. if (auto result = process->exec(path, move(arguments), move(environment)); result.is_error()) {
  144. dbgln("Failed to exec {}: {}", path, result);
  145. first_thread = nullptr;
  146. return result;
  147. }
  148. register_new(*process);
  149. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  150. process->ref();
  151. return process;
  152. }
  153. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  154. {
  155. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  156. if (process_or_error.is_error())
  157. return {};
  158. auto process = process_or_error.release_value();
  159. first_thread->regs().set_ip((FlatPtr)entry);
  160. #if ARCH(I386)
  161. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  162. #else
  163. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  164. #endif
  165. if (do_register == RegisterProcess::Yes)
  166. register_new(*process);
  167. SpinlockLocker lock(g_scheduler_lock);
  168. first_thread->set_affinity(affinity);
  169. first_thread->set_state(Thread::State::Runnable);
  170. return process;
  171. }
  172. void Process::protect_data()
  173. {
  174. m_protected_data_refs.unref([&]() {
  175. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  176. });
  177. }
  178. void Process::unprotect_data()
  179. {
  180. m_protected_data_refs.ref([&]() {
  181. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  182. });
  183. }
  184. KResultOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, String const& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  185. {
  186. auto space = Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr);
  187. if (!space)
  188. return ENOMEM;
  189. auto process = adopt_ref_if_nonnull(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty));
  190. if (!process)
  191. return ENOMEM;
  192. auto result = process->attach_resources(space.release_nonnull(), first_thread, fork_parent);
  193. if (result.is_error())
  194. return result;
  195. return process.release_nonnull();
  196. }
  197. Process::Process(const String& name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  198. : m_name(move(name))
  199. , m_is_kernel_process(is_kernel_process)
  200. , m_executable(move(executable))
  201. , m_cwd(move(cwd))
  202. , m_tty(tty)
  203. , m_wait_blocker_set(*this)
  204. {
  205. // Ensure that we protect the process data when exiting the constructor.
  206. ProtectedDataMutationScope scope { *this };
  207. m_protected_values.pid = allocate_pid();
  208. m_protected_values.ppid = ppid;
  209. m_protected_values.uid = uid;
  210. m_protected_values.gid = gid;
  211. m_protected_values.euid = uid;
  212. m_protected_values.egid = gid;
  213. m_protected_values.suid = uid;
  214. m_protected_values.sgid = gid;
  215. auto maybe_procfs_traits = ProcessProcFSTraits::try_create({}, make_weak_ptr());
  216. // NOTE: This can fail, but it should be very, *very* rare.
  217. VERIFY(!maybe_procfs_traits.is_error());
  218. m_procfs_traits = maybe_procfs_traits.release_value();
  219. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  220. }
  221. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  222. {
  223. m_space = move(preallocated_space);
  224. auto thread_or_error = [&] {
  225. if (fork_parent) {
  226. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  227. return Thread::current()->try_clone(*this);
  228. }
  229. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  230. return Thread::try_create(*this);
  231. }();
  232. if (thread_or_error.is_error())
  233. return thread_or_error.error();
  234. first_thread = thread_or_error.release_value();
  235. if (!fork_parent) {
  236. // FIXME: Figure out if this is really necessary.
  237. first_thread->detach();
  238. }
  239. return KSuccess;
  240. }
  241. Process::~Process()
  242. {
  243. unprotect_data();
  244. VERIFY(thread_count() == 0); // all threads should have been finalized
  245. VERIFY(!m_alarm_timer);
  246. PerformanceManager::add_process_exit_event(*this);
  247. }
  248. bool Process::unref() const
  249. {
  250. // NOTE: We need to obtain the process list lock before doing anything,
  251. // because otherwise someone might get in between us lowering the
  252. // refcount and acquiring the lock.
  253. auto did_hit_zero = processes().with([&](auto& list) {
  254. auto new_ref_count = deref_base();
  255. if (new_ref_count > 0)
  256. return false;
  257. if (m_list_node.is_in_list())
  258. list.remove(*const_cast<Process*>(this));
  259. return true;
  260. });
  261. if (did_hit_zero)
  262. delete this;
  263. return did_hit_zero;
  264. }
  265. // Make sure the compiler doesn't "optimize away" this function:
  266. extern void signal_trampoline_dummy() __attribute__((used));
  267. void signal_trampoline_dummy()
  268. {
  269. #if ARCH(I386)
  270. // The trampoline preserves the current eax, pushes the signal code and
  271. // then calls the signal handler. We do this because, when interrupting a
  272. // blocking syscall, that syscall may return some special error code in eax;
  273. // This error code would likely be overwritten by the signal handler, so it's
  274. // necessary to preserve it here.
  275. asm(
  276. ".intel_syntax noprefix\n"
  277. ".globl asm_signal_trampoline\n"
  278. "asm_signal_trampoline:\n"
  279. "push ebp\n"
  280. "mov ebp, esp\n"
  281. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  282. "sub esp, 4\n" // align the stack to 16 bytes
  283. "mov eax, [ebp+12]\n" // push the signal code
  284. "push eax\n"
  285. "call [ebp+8]\n" // call the signal handler
  286. "add esp, 8\n"
  287. "mov eax, %P0\n"
  288. "int 0x82\n" // sigreturn syscall
  289. ".globl asm_signal_trampoline_end\n"
  290. "asm_signal_trampoline_end:\n"
  291. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  292. #elif ARCH(X86_64)
  293. // The trampoline preserves the current rax, pushes the signal code and
  294. // then calls the signal handler. We do this because, when interrupting a
  295. // blocking syscall, that syscall may return some special error code in eax;
  296. // This error code would likely be overwritten by the signal handler, so it's
  297. // necessary to preserve it here.
  298. asm(
  299. ".intel_syntax noprefix\n"
  300. ".globl asm_signal_trampoline\n"
  301. "asm_signal_trampoline:\n"
  302. "push rbp\n"
  303. "mov rbp, rsp\n"
  304. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  305. "sub rsp, 8\n" // align the stack to 16 bytes
  306. "mov rdi, [rbp+24]\n" // push the signal code
  307. "call [rbp+16]\n" // call the signal handler
  308. "add rsp, 8\n"
  309. "mov rax, %P0\n"
  310. "int 0x82\n" // sigreturn syscall
  311. ".globl asm_signal_trampoline_end\n"
  312. "asm_signal_trampoline_end:\n"
  313. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  314. #endif
  315. }
  316. extern "C" char const asm_signal_trampoline[];
  317. extern "C" char const asm_signal_trampoline_end[];
  318. void create_signal_trampoline()
  319. {
  320. // NOTE: We leak this region.
  321. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).leak_ptr();
  322. g_signal_trampoline_region->set_syscall_region(true);
  323. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  324. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  325. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  326. g_signal_trampoline_region->set_writable(false);
  327. g_signal_trampoline_region->remap();
  328. }
  329. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  330. {
  331. VERIFY(!is_dead());
  332. VERIFY(&Process::current() == this);
  333. if (out_of_memory) {
  334. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  335. } else {
  336. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  337. auto* symbol = symbolicate_kernel_address(ip);
  338. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  339. } else {
  340. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  341. }
  342. dump_backtrace();
  343. }
  344. {
  345. ProtectedDataMutationScope scope { *this };
  346. m_protected_values.termination_signal = signal;
  347. }
  348. set_should_generate_coredump(!out_of_memory);
  349. address_space().dump_regions();
  350. VERIFY(is_user_process());
  351. die();
  352. // We can not return from here, as there is nowhere
  353. // to unwind to, so die right away.
  354. Thread::current()->die_if_needed();
  355. VERIFY_NOT_REACHED();
  356. }
  357. RefPtr<Process> Process::from_pid(ProcessID pid)
  358. {
  359. return processes().with([&](const auto& list) -> RefPtr<Process> {
  360. for (auto& process : list) {
  361. if (process.pid() == pid)
  362. return &process;
  363. }
  364. return {};
  365. });
  366. }
  367. const Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i) const
  368. {
  369. SpinlockLocker lock(m_fds_lock);
  370. if (m_fds_metadatas.size() <= i)
  371. return nullptr;
  372. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  373. return &metadata;
  374. return nullptr;
  375. }
  376. Process::FileDescriptionAndFlags* Process::FileDescriptions::get_if_valid(size_t i)
  377. {
  378. SpinlockLocker lock(m_fds_lock);
  379. if (m_fds_metadatas.size() <= i)
  380. return nullptr;
  381. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  382. return &metadata;
  383. return nullptr;
  384. }
  385. const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
  386. {
  387. SpinlockLocker lock(m_fds_lock);
  388. VERIFY(m_fds_metadatas[i].is_allocated());
  389. return m_fds_metadatas[i];
  390. }
  391. Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
  392. {
  393. SpinlockLocker lock(m_fds_lock);
  394. VERIFY(m_fds_metadatas[i].is_allocated());
  395. return m_fds_metadatas[i];
  396. }
  397. RefPtr<FileDescription> Process::FileDescriptions::file_description(int fd) const
  398. {
  399. SpinlockLocker lock(m_fds_lock);
  400. if (fd < 0)
  401. return nullptr;
  402. if (static_cast<size_t>(fd) < m_fds_metadatas.size())
  403. return m_fds_metadatas[fd].description();
  404. return nullptr;
  405. }
  406. void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
  407. {
  408. SpinlockLocker lock(m_fds_lock);
  409. for (auto& file_description_metadata : m_fds_metadatas) {
  410. callback(file_description_metadata);
  411. }
  412. }
  413. void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
  414. {
  415. SpinlockLocker lock(m_fds_lock);
  416. for (auto& file_description_metadata : m_fds_metadatas) {
  417. callback(file_description_metadata);
  418. }
  419. }
  420. size_t Process::FileDescriptions::open_count() const
  421. {
  422. size_t count = 0;
  423. enumerate([&](auto& file_description_metadata) {
  424. if (file_description_metadata.is_valid())
  425. ++count;
  426. });
  427. return count;
  428. }
  429. KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
  430. {
  431. SpinlockLocker lock(m_fds_lock);
  432. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  433. if (!m_fds_metadatas[i].is_allocated()) {
  434. m_fds_metadatas[i].allocate();
  435. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  436. }
  437. }
  438. return EMFILE;
  439. }
  440. Time kgettimeofday()
  441. {
  442. return TimeManagement::now();
  443. }
  444. siginfo_t Process::wait_info()
  445. {
  446. siginfo_t siginfo {};
  447. siginfo.si_signo = SIGCHLD;
  448. siginfo.si_pid = pid().value();
  449. siginfo.si_uid = uid().value();
  450. if (m_protected_values.termination_signal) {
  451. siginfo.si_status = m_protected_values.termination_signal;
  452. siginfo.si_code = CLD_KILLED;
  453. } else {
  454. siginfo.si_status = m_protected_values.termination_status;
  455. siginfo.si_code = CLD_EXITED;
  456. }
  457. return siginfo;
  458. }
  459. Custody& Process::current_directory()
  460. {
  461. if (!m_cwd)
  462. m_cwd = VirtualFileSystem::the().root_custody();
  463. return *m_cwd;
  464. }
  465. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  466. {
  467. if (path_length == 0)
  468. return EINVAL;
  469. if (path_length > PATH_MAX)
  470. return ENAMETOOLONG;
  471. return try_copy_kstring_from_user(user_path, path_length);
  472. }
  473. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  474. {
  475. Userspace<char const*> path_characters((FlatPtr)path.characters);
  476. return get_syscall_path_argument(path_characters, path.length);
  477. }
  478. bool Process::dump_core()
  479. {
  480. VERIFY(is_dumpable());
  481. VERIFY(should_generate_coredump());
  482. dbgln("Generating coredump for pid: {}", pid().value());
  483. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  484. auto coredump = Coredump::create(*this, coredump_path);
  485. if (!coredump)
  486. return false;
  487. return !coredump->write().is_error();
  488. }
  489. bool Process::dump_perfcore()
  490. {
  491. VERIFY(is_dumpable());
  492. VERIFY(m_perf_event_buffer);
  493. dbgln("Generating perfcore for pid: {}", pid().value());
  494. // Try to generate a filename which isn't already used.
  495. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  496. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  497. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  498. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  499. if (description_or_error.is_error()) {
  500. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  501. return false;
  502. }
  503. auto& description = *description_or_error.value();
  504. KBufferBuilder builder;
  505. if (!m_perf_event_buffer->to_json(builder)) {
  506. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  507. return false;
  508. }
  509. auto json = builder.build();
  510. if (!json) {
  511. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  512. return false;
  513. }
  514. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  515. if (description.write(json_buffer, json->size()).is_error()) {
  516. return false;
  517. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  518. }
  519. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  520. return true;
  521. }
  522. void Process::finalize()
  523. {
  524. VERIFY(Thread::current() == g_finalizer);
  525. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  526. if (is_dumpable()) {
  527. if (m_should_generate_coredump)
  528. dump_core();
  529. if (m_perf_event_buffer) {
  530. dump_perfcore();
  531. TimeManagement::the().disable_profile_timer();
  532. }
  533. }
  534. m_threads_for_coredump.clear();
  535. if (m_alarm_timer)
  536. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  537. m_fds.clear();
  538. m_tty = nullptr;
  539. m_executable = nullptr;
  540. m_cwd = nullptr;
  541. m_arguments.clear();
  542. m_environment.clear();
  543. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  544. {
  545. // FIXME: PID/TID BUG
  546. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  547. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  548. parent_thread->send_signal(SIGCHLD, this);
  549. }
  550. }
  551. if (!!ppid()) {
  552. if (auto parent = Process::from_pid(ppid())) {
  553. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  554. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  555. }
  556. }
  557. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  558. m_space->remove_all_regions({});
  559. VERIFY(ref_count() > 0);
  560. // WaitBlockerSet::finalize will be in charge of dropping the last
  561. // reference if there are still waiters around, or whenever the last
  562. // waitable states are consumed. Unless there is no parent around
  563. // anymore, in which case we'll just drop it right away.
  564. m_wait_blocker_set.finalize();
  565. }
  566. void Process::disowned_by_waiter(Process& process)
  567. {
  568. m_wait_blocker_set.disowned_by_waiter(process);
  569. }
  570. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  571. {
  572. if (auto parent = Process::from_pid(ppid()))
  573. parent->m_wait_blocker_set.unblock(*this, flags, signal);
  574. }
  575. void Process::die()
  576. {
  577. auto expected = State::Running;
  578. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  579. // It's possible that another thread calls this at almost the same time
  580. // as we can't always instantly kill other threads (they may be blocked)
  581. // So if we already were called then other threads should stop running
  582. // momentarily and we only really need to service the first thread
  583. return;
  584. }
  585. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  586. // getting an EOF when the last process using the slave PTY dies.
  587. // If the master PTY owner relies on an EOF to know when to wait() on a
  588. // slave owner, we have to allow the PTY pair to be torn down.
  589. m_tty = nullptr;
  590. VERIFY(m_threads_for_coredump.is_empty());
  591. for_each_thread([&](auto& thread) {
  592. m_threads_for_coredump.append(thread);
  593. });
  594. processes().with([&](const auto& list) {
  595. for (auto it = list.begin(); it != list.end();) {
  596. auto& process = *it;
  597. ++it;
  598. if (process.has_tracee_thread(pid())) {
  599. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  600. process.stop_tracing();
  601. auto err = process.send_signal(SIGSTOP, this);
  602. if (err.is_error())
  603. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  604. }
  605. }
  606. });
  607. kill_all_threads();
  608. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  609. KCOVDevice::free_process();
  610. #endif
  611. }
  612. void Process::terminate_due_to_signal(u8 signal)
  613. {
  614. VERIFY_INTERRUPTS_DISABLED();
  615. VERIFY(signal < 32);
  616. VERIFY(&Process::current() == this);
  617. dbgln("Terminating {} due to signal {}", *this, signal);
  618. {
  619. ProtectedDataMutationScope scope { *this };
  620. m_protected_values.termination_status = 0;
  621. m_protected_values.termination_signal = signal;
  622. }
  623. die();
  624. }
  625. KResult Process::send_signal(u8 signal, Process* sender)
  626. {
  627. // Try to send it to the "obvious" main thread:
  628. auto receiver_thread = Thread::from_tid(pid().value());
  629. // If the main thread has died, there may still be other threads:
  630. if (!receiver_thread) {
  631. // The first one should be good enough.
  632. // Neither kill(2) nor kill(3) specify any selection precedure.
  633. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  634. receiver_thread = &thread;
  635. return IterationDecision::Break;
  636. });
  637. }
  638. if (receiver_thread) {
  639. receiver_thread->send_signal(signal, sender);
  640. return KSuccess;
  641. }
  642. return ESRCH;
  643. }
  644. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity, bool joinable)
  645. {
  646. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  647. // FIXME: Do something with guard pages?
  648. auto thread_or_error = Thread::try_create(*this);
  649. if (thread_or_error.is_error())
  650. return {};
  651. auto thread = thread_or_error.release_value();
  652. thread->set_name(move(name));
  653. thread->set_affinity(affinity);
  654. thread->set_priority(priority);
  655. if (!joinable)
  656. thread->detach();
  657. auto& regs = thread->regs();
  658. regs.set_ip((FlatPtr)entry);
  659. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  660. SpinlockLocker lock(g_scheduler_lock);
  661. thread->set_state(Thread::State::Runnable);
  662. return thread;
  663. }
  664. void Process::FileDescriptionAndFlags::clear()
  665. {
  666. // FIXME: Verify Process::m_fds_lock is locked!
  667. m_description = nullptr;
  668. m_flags = 0;
  669. }
  670. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  671. {
  672. // FIXME: Verify Process::m_fds_lock is locked!
  673. m_description = move(description);
  674. m_flags = flags;
  675. }
  676. void Process::set_tty(TTY* tty)
  677. {
  678. m_tty = tty;
  679. }
  680. KResult Process::start_tracing_from(ProcessID tracer)
  681. {
  682. auto thread_tracer = ThreadTracer::create(tracer);
  683. if (!thread_tracer)
  684. return ENOMEM;
  685. m_tracer = move(thread_tracer);
  686. return KSuccess;
  687. }
  688. void Process::stop_tracing()
  689. {
  690. m_tracer = nullptr;
  691. }
  692. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  693. {
  694. VERIFY(m_tracer.ptr());
  695. m_tracer->set_regs(regs);
  696. thread.send_urgent_signal_to_self(SIGTRAP);
  697. }
  698. bool Process::create_perf_events_buffer_if_needed()
  699. {
  700. if (!m_perf_event_buffer) {
  701. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  702. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  703. }
  704. return !!m_perf_event_buffer;
  705. }
  706. void Process::delete_perf_events_buffer()
  707. {
  708. if (m_perf_event_buffer)
  709. m_perf_event_buffer = nullptr;
  710. }
  711. bool Process::remove_thread(Thread& thread)
  712. {
  713. ProtectedDataMutationScope scope { *this };
  714. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  715. VERIFY(thread_cnt_before != 0);
  716. thread_list().with([&](auto& thread_list) {
  717. thread_list.remove(thread);
  718. });
  719. return thread_cnt_before == 1;
  720. }
  721. bool Process::add_thread(Thread& thread)
  722. {
  723. ProtectedDataMutationScope scope { *this };
  724. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  725. thread_list().with([&](auto& thread_list) {
  726. thread_list.append(thread);
  727. });
  728. return is_first;
  729. }
  730. void Process::set_dumpable(bool dumpable)
  731. {
  732. if (dumpable == m_protected_values.dumpable)
  733. return;
  734. ProtectedDataMutationScope scope { *this };
  735. m_protected_values.dumpable = dumpable;
  736. }
  737. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  738. {
  739. // Write it into the first available property slot.
  740. for (auto& slot : m_coredump_properties) {
  741. if (slot.key)
  742. continue;
  743. slot.key = move(key);
  744. slot.value = move(value);
  745. return KSuccess;
  746. }
  747. return ENOBUFS;
  748. }
  749. KResult Process::try_set_coredump_property(StringView key, StringView value)
  750. {
  751. auto key_kstring = KString::try_create(key);
  752. auto value_kstring = KString::try_create(value);
  753. if (key_kstring && value_kstring)
  754. return set_coredump_property(key_kstring.release_nonnull(), value_kstring.release_nonnull());
  755. return ENOMEM;
  756. };
  757. static constexpr StringView to_string(Pledge promise)
  758. {
  759. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  760. case Pledge::x: \
  761. return #x;
  762. switch (promise) {
  763. ENUMERATE_PLEDGE_PROMISES
  764. }
  765. #undef __ENUMERATE_PLEDGE_PROMISE
  766. VERIFY_NOT_REACHED();
  767. }
  768. void Process::require_no_promises()
  769. {
  770. if (!has_promises())
  771. return;
  772. dbgln("Has made a promise");
  773. Process::current().crash(SIGABRT, 0);
  774. VERIFY_NOT_REACHED();
  775. }
  776. void Process::require_promise(Pledge promise)
  777. {
  778. if (!has_promises())
  779. return;
  780. if (has_promised(promise))
  781. return;
  782. dbgln("Has not pledged {}", to_string(promise));
  783. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  784. crash(SIGABRT, 0);
  785. }
  786. }