mmap.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <Kernel/Arch/x86/InterruptDisabler.h>
  8. #include <Kernel/Arch/x86/SmapDisabler.h>
  9. #include <Kernel/FileSystem/FileDescription.h>
  10. #include <Kernel/PerformanceEventBuffer.h>
  11. #include <Kernel/PerformanceManager.h>
  12. #include <Kernel/Process.h>
  13. #include <Kernel/VM/MemoryManager.h>
  14. #include <Kernel/VM/PageDirectory.h>
  15. #include <Kernel/VM/PrivateInodeVMObject.h>
  16. #include <Kernel/VM/Region.h>
  17. #include <Kernel/VM/SharedInodeVMObject.h>
  18. #include <LibC/limits.h>
  19. #include <LibELF/Validation.h>
  20. namespace Kernel {
  21. static bool should_make_executable_exception_for_dynamic_loader(bool make_readable, bool make_writable, bool make_executable, const Region& region)
  22. {
  23. // Normally we don't allow W -> X transitions, but we have to make an exception
  24. // for the dynamic loader, which needs to do this after performing text relocations.
  25. // FIXME: Investigate whether we could get rid of all text relocations entirely.
  26. // The exception is only made if all the following criteria is fulfilled:
  27. // The region must be RW
  28. if (!(region.is_readable() && region.is_writable() && !region.is_executable()))
  29. return false;
  30. // The region wants to become RX
  31. if (!(make_readable && !make_writable && make_executable))
  32. return false;
  33. // The region is backed by a file
  34. if (!region.vmobject().is_inode())
  35. return false;
  36. // The file mapping is private, not shared (no relocations in a shared mapping!)
  37. if (!region.vmobject().is_private_inode())
  38. return false;
  39. auto& inode_vm = static_cast<const InodeVMObject&>(region.vmobject());
  40. auto& inode = inode_vm.inode();
  41. ElfW(Ehdr) header;
  42. auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&header);
  43. auto result = inode.read_bytes(0, sizeof(header), buffer, nullptr);
  44. if (result.is_error() || result.value() != sizeof(header))
  45. return false;
  46. // The file is a valid ELF binary
  47. if (!ELF::validate_elf_header(header, inode.size()))
  48. return false;
  49. // The file is an ELF shared object
  50. if (header.e_type != ET_DYN)
  51. return false;
  52. // FIXME: Are there any additional checks/validations we could do here?
  53. return true;
  54. }
  55. static bool validate_mmap_prot(int prot, bool map_stack, bool map_anonymous, const Region* region = nullptr)
  56. {
  57. bool make_readable = prot & PROT_READ;
  58. bool make_writable = prot & PROT_WRITE;
  59. bool make_executable = prot & PROT_EXEC;
  60. if (map_anonymous && make_executable)
  61. return false;
  62. if (make_writable && make_executable)
  63. return false;
  64. if (map_stack) {
  65. if (make_executable)
  66. return false;
  67. if (!make_readable || !make_writable)
  68. return false;
  69. }
  70. if (region) {
  71. if (make_writable && region->has_been_executable())
  72. return false;
  73. if (make_executable && region->has_been_writable()) {
  74. if (should_make_executable_exception_for_dynamic_loader(make_readable, make_writable, make_executable, *region))
  75. return true;
  76. return false;
  77. }
  78. }
  79. return true;
  80. }
  81. static bool validate_inode_mmap_prot(const Process& process, int prot, const Inode& inode, bool map_shared)
  82. {
  83. auto metadata = inode.metadata();
  84. if ((prot & PROT_READ) && !metadata.may_read(process))
  85. return false;
  86. if (map_shared) {
  87. // FIXME: What about readonly filesystem mounts? We cannot make a
  88. // decision here without knowing the mount flags, so we would need to
  89. // keep a Custody or something from mmap time.
  90. if ((prot & PROT_WRITE) && !metadata.may_write(process))
  91. return false;
  92. InterruptDisabler disabler;
  93. if (auto shared_vmobject = inode.shared_vmobject()) {
  94. if ((prot & PROT_EXEC) && shared_vmobject->writable_mappings())
  95. return false;
  96. if ((prot & PROT_WRITE) && shared_vmobject->executable_mappings())
  97. return false;
  98. }
  99. }
  100. return true;
  101. }
  102. KResultOr<FlatPtr> Process::sys$mmap(Userspace<const Syscall::SC_mmap_params*> user_params)
  103. {
  104. REQUIRE_PROMISE(stdio);
  105. Syscall::SC_mmap_params params;
  106. if (!copy_from_user(&params, user_params))
  107. return EFAULT;
  108. FlatPtr addr = params.addr;
  109. auto size = params.size;
  110. auto alignment = params.alignment;
  111. auto prot = params.prot;
  112. auto flags = params.flags;
  113. auto fd = params.fd;
  114. auto offset = params.offset;
  115. if (prot & PROT_EXEC) {
  116. REQUIRE_PROMISE(prot_exec);
  117. }
  118. if (prot & MAP_FIXED) {
  119. REQUIRE_PROMISE(map_fixed);
  120. }
  121. if (alignment & ~PAGE_MASK)
  122. return EINVAL;
  123. if (page_round_up_would_wrap(size))
  124. return EINVAL;
  125. if (!is_user_range(VirtualAddress(addr), page_round_up(size)))
  126. return EFAULT;
  127. OwnPtr<KString> name;
  128. if (params.name.characters) {
  129. if (params.name.length > PATH_MAX)
  130. return ENAMETOOLONG;
  131. auto name_or_error = try_copy_kstring_from_user(params.name);
  132. if (name_or_error.is_error())
  133. return name_or_error.error();
  134. name = name_or_error.release_value();
  135. }
  136. if (size == 0)
  137. return EINVAL;
  138. if ((FlatPtr)addr & ~PAGE_MASK)
  139. return EINVAL;
  140. bool map_shared = flags & MAP_SHARED;
  141. bool map_anonymous = flags & MAP_ANONYMOUS;
  142. bool map_private = flags & MAP_PRIVATE;
  143. bool map_stack = flags & MAP_STACK;
  144. bool map_fixed = flags & MAP_FIXED;
  145. bool map_noreserve = flags & MAP_NORESERVE;
  146. bool map_randomized = flags & MAP_RANDOMIZED;
  147. if (map_shared && map_private)
  148. return EINVAL;
  149. if (!map_shared && !map_private)
  150. return EINVAL;
  151. if (map_fixed && map_randomized)
  152. return EINVAL;
  153. if (!validate_mmap_prot(prot, map_stack, map_anonymous))
  154. return EINVAL;
  155. if (map_stack && (!map_private || !map_anonymous))
  156. return EINVAL;
  157. Region* region = nullptr;
  158. Optional<Range> range;
  159. if (map_randomized) {
  160. range = space().page_directory().range_allocator().allocate_randomized(page_round_up(size), alignment);
  161. } else {
  162. range = space().allocate_range(VirtualAddress(addr), size, alignment);
  163. if (!range.has_value()) {
  164. if (addr && !map_fixed) {
  165. // If there's an address but MAP_FIXED wasn't specified, the address is just a hint.
  166. range = space().allocate_range({}, size, alignment);
  167. }
  168. }
  169. }
  170. if (!range.has_value())
  171. return ENOMEM;
  172. if (map_anonymous) {
  173. auto strategy = map_noreserve ? AllocationStrategy::None : AllocationStrategy::Reserve;
  174. auto region_or_error = space().allocate_region(range.value(), {}, prot, strategy);
  175. if (region_or_error.is_error())
  176. return region_or_error.error().error();
  177. region = region_or_error.value();
  178. } else {
  179. if (offset < 0)
  180. return EINVAL;
  181. if (static_cast<size_t>(offset) & ~PAGE_MASK)
  182. return EINVAL;
  183. auto description = file_description(fd);
  184. if (!description)
  185. return EBADF;
  186. if (description->is_directory())
  187. return ENODEV;
  188. // Require read access even when read protection is not requested.
  189. if (!description->is_readable())
  190. return EACCES;
  191. if (map_shared) {
  192. if ((prot & PROT_WRITE) && !description->is_writable())
  193. return EACCES;
  194. }
  195. if (description->inode()) {
  196. if (!validate_inode_mmap_prot(*this, prot, *description->inode(), map_shared))
  197. return EACCES;
  198. }
  199. auto region_or_error = description->mmap(*this, range.value(), static_cast<u64>(offset), prot, map_shared);
  200. if (region_or_error.is_error())
  201. return region_or_error.error().error();
  202. region = region_or_error.value();
  203. }
  204. if (!region)
  205. return ENOMEM;
  206. region->set_mmap(true);
  207. if (map_shared)
  208. region->set_shared(true);
  209. if (map_stack)
  210. region->set_stack(true);
  211. region->set_name(move(name));
  212. PerformanceManager::add_mmap_perf_event(*this, *region);
  213. return region->vaddr().get();
  214. }
  215. static KResultOr<Range> expand_range_to_page_boundaries(FlatPtr address, size_t size)
  216. {
  217. if (page_round_up_would_wrap(size))
  218. return EINVAL;
  219. if ((address + size) < address)
  220. return EINVAL;
  221. if (page_round_up_would_wrap(address + size))
  222. return EINVAL;
  223. auto base = VirtualAddress { address }.page_base();
  224. auto end = page_round_up(address + size);
  225. return Range { base, end - base.get() };
  226. }
  227. KResultOr<FlatPtr> Process::sys$mprotect(Userspace<void*> addr, size_t size, int prot)
  228. {
  229. REQUIRE_PROMISE(stdio);
  230. if (prot & PROT_EXEC) {
  231. REQUIRE_PROMISE(prot_exec);
  232. }
  233. auto range_or_error = expand_range_to_page_boundaries(addr, size);
  234. if (range_or_error.is_error())
  235. return range_or_error.error();
  236. auto range_to_mprotect = range_or_error.value();
  237. if (!range_to_mprotect.size())
  238. return EINVAL;
  239. if (!is_user_range(range_to_mprotect))
  240. return EFAULT;
  241. if (auto* whole_region = space().find_region_from_range(range_to_mprotect)) {
  242. if (!whole_region->is_mmap())
  243. return EPERM;
  244. if (!validate_mmap_prot(prot, whole_region->is_stack(), whole_region->vmobject().is_anonymous(), whole_region))
  245. return EINVAL;
  246. if (whole_region->access() == prot_to_region_access_flags(prot))
  247. return 0;
  248. if (whole_region->vmobject().is_inode()
  249. && !validate_inode_mmap_prot(*this, prot, static_cast<const InodeVMObject&>(whole_region->vmobject()).inode(), whole_region->is_shared())) {
  250. return EACCES;
  251. }
  252. whole_region->set_readable(prot & PROT_READ);
  253. whole_region->set_writable(prot & PROT_WRITE);
  254. whole_region->set_executable(prot & PROT_EXEC);
  255. whole_region->remap();
  256. return 0;
  257. }
  258. // Check if we can carve out the desired range from an existing region
  259. if (auto* old_region = space().find_region_containing(range_to_mprotect)) {
  260. if (!old_region->is_mmap())
  261. return EPERM;
  262. if (!validate_mmap_prot(prot, old_region->is_stack(), old_region->vmobject().is_anonymous(), old_region))
  263. return EINVAL;
  264. if (old_region->access() == prot_to_region_access_flags(prot))
  265. return 0;
  266. if (old_region->vmobject().is_inode()
  267. && !validate_inode_mmap_prot(*this, prot, static_cast<const InodeVMObject&>(old_region->vmobject()).inode(), old_region->is_shared())) {
  268. return EACCES;
  269. }
  270. // Remove the old region from our regions tree, since were going to add another region
  271. // with the exact same start address, but dont deallocate it yet
  272. auto region = space().take_region(*old_region);
  273. VERIFY(region);
  274. // Unmap the old region here, specifying that we *don't* want the VM deallocated.
  275. region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No);
  276. // This vector is the region(s) adjacent to our range.
  277. // We need to allocate a new region for the range we wanted to change permission bits on.
  278. auto adjacent_regions = space().split_region_around_range(*region, range_to_mprotect);
  279. size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_mprotect.base().get() - region->range().base().get());
  280. auto& new_region = space().allocate_split_region(*region, range_to_mprotect, new_range_offset_in_vmobject);
  281. new_region.set_readable(prot & PROT_READ);
  282. new_region.set_writable(prot & PROT_WRITE);
  283. new_region.set_executable(prot & PROT_EXEC);
  284. // Map the new regions using our page directory (they were just allocated and don't have one).
  285. for (auto* adjacent_region : adjacent_regions) {
  286. adjacent_region->map(space().page_directory());
  287. }
  288. new_region.map(space().page_directory());
  289. return 0;
  290. }
  291. if (const auto& regions = space().find_regions_intersecting(range_to_mprotect); regions.size()) {
  292. size_t full_size_found = 0;
  293. // first check before doing anything
  294. for (const auto* region : regions) {
  295. if (!region->is_mmap())
  296. return EPERM;
  297. if (!validate_mmap_prot(prot, region->is_stack(), region->vmobject().is_anonymous(), region))
  298. return EINVAL;
  299. if (region->access() == prot_to_region_access_flags(prot))
  300. return 0;
  301. if (region->vmobject().is_inode()
  302. && !validate_inode_mmap_prot(*this, prot, static_cast<const InodeVMObject&>(region->vmobject()).inode(), region->is_shared())) {
  303. return EACCES;
  304. }
  305. full_size_found += region->range().intersect(range_to_mprotect).size();
  306. }
  307. if (full_size_found != range_to_mprotect.size())
  308. return ENOMEM;
  309. // then do all the other stuff
  310. for (auto* old_region : regions) {
  311. const auto intersection_to_mprotect = range_to_mprotect.intersect(old_region->range());
  312. // full sub region
  313. if (intersection_to_mprotect == old_region->range()) {
  314. old_region->set_readable(prot & PROT_READ);
  315. old_region->set_writable(prot & PROT_WRITE);
  316. old_region->set_executable(prot & PROT_EXEC);
  317. old_region->remap();
  318. continue;
  319. }
  320. // Remove the old region from our regions tree, since were going to add another region
  321. // with the exact same start address, but dont deallocate it yet
  322. auto region = space().take_region(*old_region);
  323. VERIFY(region);
  324. // Unmap the old region here, specifying that we *don't* want the VM deallocated.
  325. region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No);
  326. // This vector is the region(s) adjacent to our range.
  327. // We need to allocate a new region for the range we wanted to change permission bits on.
  328. auto adjacent_regions = space().split_region_around_range(*old_region, intersection_to_mprotect);
  329. // there should only be one
  330. VERIFY(adjacent_regions.size() == 1);
  331. size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_mprotect.base().get() - old_region->range().base().get());
  332. auto& new_region = space().allocate_split_region(*region, intersection_to_mprotect, new_range_offset_in_vmobject);
  333. new_region.set_readable(prot & PROT_READ);
  334. new_region.set_writable(prot & PROT_WRITE);
  335. new_region.set_executable(prot & PROT_EXEC);
  336. // Map the new region using our page directory (they were just allocated and don't have one) if any.
  337. if (adjacent_regions.size())
  338. adjacent_regions[0]->map(space().page_directory());
  339. new_region.map(space().page_directory());
  340. }
  341. return 0;
  342. }
  343. return EINVAL;
  344. }
  345. KResultOr<FlatPtr> Process::sys$madvise(Userspace<void*> address, size_t size, int advice)
  346. {
  347. REQUIRE_PROMISE(stdio);
  348. auto range_or_error = expand_range_to_page_boundaries(address, size);
  349. if (range_or_error.is_error())
  350. return range_or_error.error();
  351. auto range_to_madvise = range_or_error.value();
  352. if (!range_to_madvise.size())
  353. return EINVAL;
  354. if (!is_user_range(range_to_madvise))
  355. return EFAULT;
  356. auto* region = space().find_region_from_range(range_to_madvise);
  357. if (!region)
  358. return EINVAL;
  359. if (!region->is_mmap())
  360. return EPERM;
  361. bool set_volatile = advice & MADV_SET_VOLATILE;
  362. bool set_nonvolatile = advice & MADV_SET_NONVOLATILE;
  363. if (set_volatile && set_nonvolatile)
  364. return EINVAL;
  365. if (set_volatile || set_nonvolatile) {
  366. if (!region->vmobject().is_anonymous())
  367. return EPERM;
  368. bool was_purged = false;
  369. switch (region->set_volatile(VirtualAddress(address), size, set_volatile, was_purged)) {
  370. case Region::SetVolatileError::Success:
  371. break;
  372. case Region::SetVolatileError::NotPurgeable:
  373. return EPERM;
  374. case Region::SetVolatileError::OutOfMemory:
  375. return ENOMEM;
  376. }
  377. if (set_nonvolatile)
  378. return was_purged ? 1 : 0;
  379. return 0;
  380. }
  381. if (advice & MADV_GET_VOLATILE) {
  382. if (!region->vmobject().is_anonymous())
  383. return EPERM;
  384. return region->is_volatile(VirtualAddress(address), size) ? 0 : 1;
  385. }
  386. return EINVAL;
  387. }
  388. KResultOr<FlatPtr> Process::sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*> user_params)
  389. {
  390. REQUIRE_PROMISE(stdio);
  391. Syscall::SC_set_mmap_name_params params;
  392. if (!copy_from_user(&params, user_params))
  393. return EFAULT;
  394. if (params.name.length > PATH_MAX)
  395. return ENAMETOOLONG;
  396. auto name_or_error = try_copy_kstring_from_user(params.name);
  397. if (name_or_error.is_error())
  398. return name_or_error.error();
  399. auto name = name_or_error.release_value();
  400. auto range_or_error = expand_range_to_page_boundaries((FlatPtr)params.addr, params.size);
  401. if (range_or_error.is_error())
  402. return range_or_error.error();
  403. auto range = range_or_error.value();
  404. auto* region = space().find_region_from_range(range);
  405. if (!region)
  406. return EINVAL;
  407. if (!region->is_mmap())
  408. return EPERM;
  409. region->set_name(move(name));
  410. PerformanceManager::add_mmap_perf_event(*this, *region);
  411. return 0;
  412. }
  413. KResultOr<FlatPtr> Process::sys$munmap(Userspace<void*> addr, size_t size)
  414. {
  415. REQUIRE_PROMISE(stdio);
  416. auto result = space().unmap_mmap_range(VirtualAddress { addr }, size);
  417. if (result.is_error())
  418. return result;
  419. return 0;
  420. }
  421. KResultOr<FlatPtr> Process::sys$mremap(Userspace<const Syscall::SC_mremap_params*> user_params)
  422. {
  423. REQUIRE_PROMISE(stdio);
  424. Syscall::SC_mremap_params params {};
  425. if (!copy_from_user(&params, user_params))
  426. return EFAULT;
  427. auto range_or_error = expand_range_to_page_boundaries((FlatPtr)params.old_address, params.old_size);
  428. if (range_or_error.is_error())
  429. return range_or_error.error().error();
  430. auto old_range = range_or_error.value();
  431. auto* old_region = space().find_region_from_range(old_range);
  432. if (!old_region)
  433. return EINVAL;
  434. if (!old_region->is_mmap())
  435. return EPERM;
  436. if (old_region->vmobject().is_shared_inode() && params.flags & MAP_PRIVATE && !(params.flags & (MAP_ANONYMOUS | MAP_NORESERVE))) {
  437. auto range = old_region->range();
  438. auto old_prot = region_access_flags_to_prot(old_region->access());
  439. auto old_offset = old_region->offset_in_vmobject();
  440. NonnullRefPtr inode = static_cast<SharedInodeVMObject&>(old_region->vmobject()).inode();
  441. auto new_vmobject = PrivateInodeVMObject::create_with_inode(inode);
  442. if (!new_vmobject)
  443. return ENOMEM;
  444. auto old_name = old_region->take_name();
  445. // Unmap without deallocating the VM range since we're going to reuse it.
  446. old_region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No);
  447. bool success = space().deallocate_region(*old_region);
  448. VERIFY(success);
  449. auto new_region_or_error = space().allocate_region_with_vmobject(range, new_vmobject.release_nonnull(), old_offset, old_name->view(), old_prot, false);
  450. if (new_region_or_error.is_error())
  451. return new_region_or_error.error().error();
  452. auto& new_region = *new_region_or_error.value();
  453. new_region.set_mmap(true);
  454. return new_region.vaddr().get();
  455. }
  456. dbgln("sys$mremap: Unimplemented remap request (flags={})", params.flags);
  457. return ENOTIMPL;
  458. }
  459. KResultOr<FlatPtr> Process::sys$allocate_tls(Userspace<const char*> initial_data, size_t size)
  460. {
  461. REQUIRE_PROMISE(stdio);
  462. if (!size || size % PAGE_SIZE != 0)
  463. return EINVAL;
  464. if (!m_master_tls_region.is_null())
  465. return EEXIST;
  466. if (thread_count() != 1)
  467. return EFAULT;
  468. Thread* main_thread = nullptr;
  469. for_each_thread([&main_thread](auto& thread) {
  470. main_thread = &thread;
  471. return IterationDecision::Break;
  472. });
  473. VERIFY(main_thread);
  474. auto range = space().allocate_range({}, size);
  475. if (!range.has_value())
  476. return ENOMEM;
  477. auto region_or_error = space().allocate_region(range.value(), String("Master TLS"), PROT_READ | PROT_WRITE);
  478. if (region_or_error.is_error())
  479. return region_or_error.error().error();
  480. m_master_tls_region = region_or_error.value()->make_weak_ptr();
  481. m_master_tls_size = size;
  482. m_master_tls_alignment = PAGE_SIZE;
  483. {
  484. Kernel::SmapDisabler disabler;
  485. void* fault_at;
  486. if (!Kernel::safe_memcpy((char*)m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), (char*)initial_data.ptr(), size, fault_at))
  487. return EFAULT;
  488. }
  489. auto tsr_result = main_thread->make_thread_specific_region({});
  490. if (tsr_result.is_error())
  491. return EFAULT;
  492. #if ARCH(I386)
  493. auto& tls_descriptor = Processor::current().get_gdt_entry(GDT_SELECTOR_TLS);
  494. tls_descriptor.set_base(main_thread->thread_specific_data());
  495. tls_descriptor.set_limit(main_thread->thread_specific_region_size());
  496. #else
  497. TODO();
  498. #endif
  499. return m_master_tls_region.unsafe_ptr()->vaddr().get();
  500. }
  501. KResultOr<FlatPtr> Process::sys$msyscall(Userspace<void*> address)
  502. {
  503. if (space().enforces_syscall_regions())
  504. return EPERM;
  505. if (!address) {
  506. space().set_enforces_syscall_regions(true);
  507. return 0;
  508. }
  509. if (!is_user_address(VirtualAddress { address }))
  510. return EFAULT;
  511. auto* region = space().find_region_containing(Range { VirtualAddress { address }, 1 });
  512. if (!region)
  513. return EINVAL;
  514. if (!region->is_mmap())
  515. return EINVAL;
  516. region->set_syscall_region(true);
  517. return 0;
  518. }
  519. }