123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- /*
- * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <AK/Function.h>
- #include <AK/HashTable.h>
- #include <AK/Math.h>
- #include <AK/QuickSort.h>
- #include <AK/StringBuilder.h>
- #include <LibGfx/Painter.h>
- #include <LibGfx/Path.h>
- namespace Gfx {
- void Path::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
- {
- auto next_point = point;
- double rx = radii.width();
- double ry = radii.height();
- double x_axis_rotation_s;
- double x_axis_rotation_c;
- AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
- // Find the last point
- FloatPoint last_point { 0, 0 };
- if (!m_segments.is_empty())
- last_point = m_segments.last()->point();
- // Step 1 of out-of-range radii correction
- if (rx == 0.0 || ry == 0.0) {
- append_segment<LineSegment>(next_point);
- return;
- }
- // Step 2 of out-of-range radii correction
- if (rx < 0)
- rx *= -1.0;
- if (ry < 0)
- ry *= -1.0;
- // POSSIBLY HACK: Handle the case where both points are the same.
- auto same_endpoints = next_point == last_point;
- if (same_endpoints) {
- if (!large_arc) {
- // Nothing is going to be drawn anyway.
- return;
- }
- // Move the endpoint by a small amount to avoid division by zero.
- next_point.translate_by(0.01f, 0.01f);
- }
- // Find (cx, cy), theta_1, theta_delta
- // Step 1: Compute (x1', y1')
- auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
- auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
- auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
- auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
- // Step 2: Compute (cx', cy')
- double x1p_sq = x1p * x1p;
- double y1p_sq = y1p * y1p;
- double rx_sq = rx * rx;
- double ry_sq = ry * ry;
- // Step 3 of out-of-range radii correction
- double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
- double multiplier;
- if (lambda > 1.0) {
- auto lambda_sqrt = AK::sqrt(lambda);
- rx *= lambda_sqrt;
- ry *= lambda_sqrt;
- multiplier = 0.0;
- } else {
- double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
- double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
- multiplier = AK::sqrt(numerator / denominator);
- }
- if (large_arc == sweep)
- multiplier *= -1.0;
- double cxp = multiplier * rx * y1p / ry;
- double cyp = multiplier * -ry * x1p / rx;
- // Step 3: Compute (cx, cy) from (cx', cy')
- x_avg = (last_point.x() + next_point.x()) / 2.0f;
- y_avg = (last_point.y() + next_point.y()) / 2.0f;
- double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
- double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
- double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
- double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
- auto theta_delta = theta_2 - theta_1;
- if (!sweep && theta_delta > 0.0) {
- theta_delta -= 2 * AK::Pi<double>;
- } else if (sweep && theta_delta < 0) {
- theta_delta += 2 * AK::Pi<double>;
- }
- elliptical_arc_to(
- next_point,
- { cx, cy },
- { rx, ry },
- x_axis_rotation,
- theta_1,
- theta_delta,
- large_arc,
- sweep);
- }
- void Path::close()
- {
- if (m_segments.size() <= 1)
- return;
- auto last_point = m_segments.last()->point();
- for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
- auto& segment = m_segments[i];
- if (segment->type() == Segment::Type::MoveTo) {
- if (last_point == segment->point())
- return;
- append_segment<LineSegment>(segment->point());
- invalidate_split_lines();
- return;
- }
- }
- }
- void Path::close_all_subpaths()
- {
- if (m_segments.size() <= 1)
- return;
- invalidate_split_lines();
- Optional<FloatPoint> cursor, start_of_subpath;
- bool is_first_point_in_subpath { false };
- auto close_previous_subpath = [&] {
- if (cursor.has_value() && !is_first_point_in_subpath) {
- // This is a move from a subpath to another
- // connect the two ends of this subpath before
- // moving on to the next one
- VERIFY(start_of_subpath.has_value());
- append_segment<MoveSegment>(cursor.value());
- append_segment<LineSegment>(start_of_subpath.value());
- }
- };
- auto segment_count = m_segments.size();
- for (size_t i = 0; i < segment_count; i++) {
- // Note: We need to use m_segments[i] as append_segment() may invalidate any references.
- switch (m_segments[i]->type()) {
- case Segment::Type::MoveTo: {
- close_previous_subpath();
- is_first_point_in_subpath = true;
- cursor = m_segments[i]->point();
- break;
- }
- case Segment::Type::LineTo:
- case Segment::Type::QuadraticBezierCurveTo:
- case Segment::Type::CubicBezierCurveTo:
- case Segment::Type::EllipticalArcTo:
- if (is_first_point_in_subpath) {
- start_of_subpath = cursor;
- is_first_point_in_subpath = false;
- }
- cursor = m_segments[i]->point();
- break;
- case Segment::Type::Invalid:
- VERIFY_NOT_REACHED();
- break;
- }
- }
- if (m_segments.last()->type() != Segment::Type::MoveTo)
- close_previous_subpath();
- }
- DeprecatedString Path::to_deprecated_string() const
- {
- StringBuilder builder;
- builder.append("Path { "sv);
- for (auto& segment : m_segments) {
- switch (segment->type()) {
- case Segment::Type::MoveTo:
- builder.append("MoveTo"sv);
- break;
- case Segment::Type::LineTo:
- builder.append("LineTo"sv);
- break;
- case Segment::Type::QuadraticBezierCurveTo:
- builder.append("QuadraticBezierCurveTo"sv);
- break;
- case Segment::Type::CubicBezierCurveTo:
- builder.append("CubicBezierCurveTo"sv);
- break;
- case Segment::Type::EllipticalArcTo:
- builder.append("EllipticalArcTo"sv);
- break;
- case Segment::Type::Invalid:
- builder.append("Invalid"sv);
- break;
- }
- builder.appendff("({}", segment->point());
- switch (segment->type()) {
- case Segment::Type::QuadraticBezierCurveTo:
- builder.append(", "sv);
- builder.append(static_cast<QuadraticBezierCurveSegment const&>(*segment).through().to_deprecated_string());
- break;
- case Segment::Type::CubicBezierCurveTo:
- builder.append(", "sv);
- builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_0().to_deprecated_string());
- builder.append(", "sv);
- builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_1().to_deprecated_string());
- break;
- case Segment::Type::EllipticalArcTo: {
- auto& arc = static_cast<EllipticalArcSegment const&>(*segment);
- builder.appendff(", {}, {}, {}, {}, {}",
- arc.radii().to_deprecated_string().characters(),
- arc.center().to_deprecated_string().characters(),
- arc.x_axis_rotation(),
- arc.theta_1(),
- arc.theta_delta());
- break;
- }
- default:
- break;
- }
- builder.append(") "sv);
- }
- builder.append('}');
- return builder.to_deprecated_string();
- }
- void Path::segmentize_path()
- {
- Vector<FloatLine> segments;
- float min_x = 0;
- float min_y = 0;
- float max_x = 0;
- float max_y = 0;
- bool first = true;
- auto add_point_to_bbox = [&](Gfx::FloatPoint point) {
- float x = point.x();
- float y = point.y();
- if (first) {
- min_x = max_x = x;
- min_y = max_y = y;
- first = false;
- } else {
- min_x = min(min_x, x);
- min_y = min(min_y, y);
- max_x = max(max_x, x);
- max_y = max(max_y, y);
- }
- };
- auto add_line = [&](auto const& p0, auto const& p1) {
- segments.append({ p0, p1 });
- add_point_to_bbox(p1);
- };
- FloatPoint cursor { 0, 0 };
- for (auto& segment : m_segments) {
- switch (segment->type()) {
- case Segment::Type::MoveTo:
- add_point_to_bbox(segment->point());
- cursor = segment->point();
- break;
- case Segment::Type::LineTo: {
- add_line(cursor, segment->point());
- cursor = segment->point();
- break;
- }
- case Segment::Type::QuadraticBezierCurveTo: {
- auto control = static_cast<QuadraticBezierCurveSegment const&>(*segment).through();
- Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
- add_line(p0, p1);
- });
- cursor = segment->point();
- break;
- }
- case Segment::Type::CubicBezierCurveTo: {
- auto& curve = static_cast<CubicBezierCurveSegment const&>(*segment);
- auto control_0 = curve.through_0();
- auto control_1 = curve.through_1();
- Painter::for_each_line_segment_on_cubic_bezier_curve(control_0, control_1, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
- add_line(p0, p1);
- });
- cursor = segment->point();
- break;
- }
- case Segment::Type::EllipticalArcTo: {
- auto& arc = static_cast<EllipticalArcSegment const&>(*segment);
- Painter::for_each_line_segment_on_elliptical_arc(cursor, arc.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), [&](FloatPoint p0, FloatPoint p1) {
- add_line(p0, p1);
- });
- cursor = segment->point();
- break;
- }
- case Segment::Type::Invalid:
- VERIFY_NOT_REACHED();
- }
- first = false;
- }
- m_split_lines = move(segments);
- m_bounding_box = Gfx::FloatRect { min_x, min_y, max_x - min_x, max_y - min_y };
- }
- Path Path::copy_transformed(Gfx::AffineTransform const& transform) const
- {
- Path result;
- for (auto const& segment : m_segments) {
- switch (segment->type()) {
- case Segment::Type::MoveTo:
- result.move_to(transform.map(segment->point()));
- break;
- case Segment::Type::LineTo: {
- result.line_to(transform.map(segment->point()));
- break;
- }
- case Segment::Type::QuadraticBezierCurveTo: {
- auto const& quadratic_segment = static_cast<QuadraticBezierCurveSegment const&>(*segment);
- result.quadratic_bezier_curve_to(transform.map(quadratic_segment.through()), transform.map(segment->point()));
- break;
- }
- case Segment::Type::CubicBezierCurveTo: {
- auto const& cubic_segment = static_cast<CubicBezierCurveSegment const&>(*segment);
- result.cubic_bezier_curve_to(transform.map(cubic_segment.through_0()), transform.map(cubic_segment.through_1()), transform.map(segment->point()));
- break;
- }
- case Segment::Type::EllipticalArcTo: {
- auto const& arc_segment = static_cast<EllipticalArcSegment const&>(*segment);
- auto det_negative = transform.determinant() < 0;
- result.elliptical_arc_to(
- transform.map(segment->point()),
- transform.map(arc_segment.center()),
- transform.map(arc_segment.radii()),
- arc_segment.x_axis_rotation() + transform.rotation(),
- det_negative ? AK::Pi<float> * 2 - arc_segment.theta_1() : arc_segment.theta_1(),
- det_negative ? -arc_segment.theta_delta() : arc_segment.theta_delta(),
- arc_segment.large_arc(),
- det_negative ? !arc_segment.sweep() : arc_segment.sweep());
- break;
- }
- case Segment::Type::Invalid:
- VERIFY_NOT_REACHED();
- }
- }
- return result;
- }
- void Path::add_path(Path const& other)
- {
- m_segments.extend(other.m_segments);
- invalidate_split_lines();
- }
- template<typename T>
- struct RoundTrip {
- RoundTrip(ReadonlySpan<T> span)
- : m_span(span)
- {
- }
- size_t size() const
- {
- return m_span.size() * 2 - 1;
- }
- T const& operator[](size_t index) const
- {
- // Follow the path:
- if (index < m_span.size())
- return m_span[index];
- // Then in reverse:
- if (index < size())
- return m_span[size() - index - 1];
- // Then wrap around again:
- return m_span[index - size() + 1];
- }
- private:
- ReadonlySpan<T> m_span;
- };
- Path Path::stroke_to_fill(float thickness) const
- {
- // Note: This convolves a polygon with the path using the algorithm described
- // in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
- auto& lines = split_lines();
- if (lines.is_empty())
- return Path {};
- // Paths can be disconnected, which a pain to deal with, so split it up.
- Vector<Vector<FloatPoint>> segments;
- segments.append({ lines.first().a() });
- for (auto& line : lines) {
- if (line.a() == segments.last().last()) {
- segments.last().append(line.b());
- } else {
- segments.append({ line.a(), line.b() });
- }
- }
- // Note: This is the same as the tolerance from bezier curve splitting.
- constexpr auto flatness = 0.015f;
- auto pen_vertex_count = max(
- static_cast<int>(ceilf(AK::Pi<float> / acosf(1 - (2 * flatness) / thickness))), 4);
- if (pen_vertex_count % 2 == 1)
- pen_vertex_count += 1;
- Vector<FloatPoint, 128> pen_vertices;
- pen_vertices.ensure_capacity(pen_vertex_count);
- // Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
- // to be a circle (or an approximation of one), but other shapes are untested.
- float theta = 0;
- float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
- for (int i = 0; i < pen_vertex_count; i++) {
- float sin_theta;
- float cos_theta;
- AK::sincos(theta, sin_theta, cos_theta);
- pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
- theta -= theta_delta;
- }
- auto wrapping_index = [](auto& vertices, auto index) {
- return vertices[(index + vertices.size()) % vertices.size()];
- };
- auto angle_between = [](auto p1, auto p2) {
- auto delta = p2 - p1;
- return atan2f(delta.y(), delta.x());
- };
- struct ActiveRange {
- float start;
- float end;
- bool in_range(float angle) const
- {
- // Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
- return ((angle <= start && angle >= end)
- || (start < end && angle <= start)
- || (start < end && angle >= end));
- }
- };
- Vector<ActiveRange, 128> active_ranges;
- active_ranges.ensure_capacity(pen_vertices.size());
- for (auto i = 0; i < pen_vertex_count; i++) {
- active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
- angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
- }
- auto clockwise = [](float current_angle, float target_angle) {
- if (target_angle < 0)
- target_angle += AK::Pi<float> * 2;
- if (current_angle < 0)
- current_angle += AK::Pi<float> * 2;
- if (target_angle < current_angle)
- target_angle += AK::Pi<float> * 2;
- return (target_angle - current_angle) <= AK::Pi<float>;
- };
- Path convolution;
- for (auto& segment : segments) {
- RoundTrip<FloatPoint> shape { segment };
- bool first = true;
- auto add_vertex = [&](auto v) {
- if (first) {
- convolution.move_to(v);
- first = false;
- } else {
- convolution.line_to(v);
- }
- };
- auto shape_idx = 0u;
- auto slope = [&] {
- return angle_between(shape[shape_idx], shape[shape_idx + 1]);
- };
- auto start_slope = slope();
- // Note: At least one range must be active.
- auto active = *active_ranges.find_first_index_if([&](auto& range) {
- return range.in_range(start_slope);
- });
- while (shape_idx < shape.size()) {
- add_vertex(shape[shape_idx] + pen_vertices[active]);
- auto slope_now = slope();
- auto range = active_ranges[active];
- if (range.in_range(slope_now)) {
- shape_idx++;
- } else {
- if (clockwise(slope_now, range.end)) {
- if (active == static_cast<size_t>(pen_vertex_count - 1))
- active = 0;
- else
- active++;
- } else {
- if (active == 0)
- active = pen_vertex_count - 1;
- else
- active--;
- }
- }
- }
- }
- return convolution;
- }
- }
|