Object.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/String.h>
  27. #include <LibJS/Heap/Heap.h>
  28. #include <LibJS/Interpreter.h>
  29. #include <LibJS/Runtime/Array.h>
  30. #include <LibJS/Runtime/Error.h>
  31. #include <LibJS/Runtime/GlobalObject.h>
  32. #include <LibJS/Runtime/NativeFunction.h>
  33. #include <LibJS/Runtime/NativeProperty.h>
  34. #include <LibJS/Runtime/Object.h>
  35. #include <LibJS/Runtime/Shape.h>
  36. #include <LibJS/Runtime/Value.h>
  37. namespace JS {
  38. Object* Object::create_empty(Interpreter&, GlobalObject& global_object)
  39. {
  40. return global_object.heap().allocate<Object>(global_object.object_prototype());
  41. }
  42. Object::Object(Object* prototype)
  43. {
  44. if (prototype) {
  45. m_shape = interpreter().global_object().empty_object_shape();
  46. set_prototype(prototype);
  47. } else {
  48. m_shape = interpreter().heap().allocate<Shape>();
  49. }
  50. }
  51. Object::~Object()
  52. {
  53. }
  54. Object* Object::prototype()
  55. {
  56. return shape().prototype();
  57. }
  58. const Object* Object::prototype() const
  59. {
  60. return shape().prototype();
  61. }
  62. void Object::set_prototype(Object* new_prototype)
  63. {
  64. if (prototype() == new_prototype)
  65. return;
  66. if (shape().is_unique()) {
  67. shape().set_prototype_without_transition(new_prototype);
  68. return;
  69. }
  70. m_shape = m_shape->create_prototype_transition(new_prototype);
  71. }
  72. bool Object::has_prototype(const Object* prototype) const
  73. {
  74. for (auto* object = this->prototype(); object; object = object->prototype()) {
  75. if (object == prototype)
  76. return true;
  77. }
  78. return false;
  79. }
  80. Value Object::get_own_property(const Object& this_object, const FlyString& property_name) const
  81. {
  82. auto metadata = shape().lookup(property_name);
  83. if (!metadata.has_value())
  84. return {};
  85. auto value_here = m_storage[metadata.value().offset];
  86. ASSERT(!value_here.is_empty());
  87. if (value_here.is_object() && value_here.as_object().is_native_property()) {
  88. auto& native_property = static_cast<const NativeProperty&>(value_here.as_object());
  89. auto& interpreter = const_cast<Object*>(this)->interpreter();
  90. auto& call_frame = interpreter.push_call_frame();
  91. call_frame.this_value = const_cast<Object*>(&this_object);
  92. auto result = native_property.get(interpreter);
  93. interpreter.pop_call_frame();
  94. return result;
  95. }
  96. return value_here;
  97. }
  98. void Object::set_shape(Shape& new_shape)
  99. {
  100. m_storage.resize(new_shape.property_count());
  101. m_shape = &new_shape;
  102. }
  103. void Object::put_own_property(Object& this_object, const FlyString& property_name, u8 attributes, Value value, PutOwnPropertyMode mode)
  104. {
  105. auto metadata = shape().lookup(property_name);
  106. if (!metadata.has_value()) {
  107. if (m_shape->is_unique()) {
  108. m_shape->add_property_to_unique_shape(property_name, attributes);
  109. m_storage.resize(m_shape->property_count());
  110. } else {
  111. set_shape(*m_shape->create_put_transition(property_name, attributes));
  112. }
  113. metadata = shape().lookup(property_name);
  114. ASSERT(metadata.has_value());
  115. }
  116. if (mode == PutOwnPropertyMode::DefineProperty && !(metadata.value().attributes & Attribute::Configurable) && attributes != metadata.value().attributes) {
  117. dbg() << "Disallow reconfig of non-configurable property";
  118. interpreter().throw_exception<TypeError>(String::format("Cannot redefine property '%s'", property_name.characters()));
  119. return;
  120. }
  121. if (mode == PutOwnPropertyMode::DefineProperty && attributes != metadata.value().attributes) {
  122. if (m_shape->is_unique()) {
  123. m_shape->reconfigure_property_in_unique_shape(property_name, attributes);
  124. } else {
  125. set_shape(*m_shape->create_configure_transition(property_name, attributes));
  126. }
  127. metadata = shape().lookup(property_name);
  128. dbg() << "Reconfigured property " << property_name << ", new shape says offset is " << metadata.value().offset << " and my storage capacity is " << m_storage.size();
  129. }
  130. if (mode == PutOwnPropertyMode::Put && !(metadata.value().attributes & Attribute::Writable)) {
  131. dbg() << "Disallow write to non-writable property";
  132. return;
  133. }
  134. if (value.is_empty())
  135. return;
  136. auto value_here = m_storage[metadata.value().offset];
  137. if (value_here.is_object() && value_here.as_object().is_native_property()) {
  138. auto& native_property = static_cast<NativeProperty&>(value_here.as_object());
  139. auto& interpreter = const_cast<Object*>(this)->interpreter();
  140. auto& call_frame = interpreter.push_call_frame();
  141. call_frame.this_value = &this_object;
  142. native_property.set(interpreter, value);
  143. interpreter.pop_call_frame();
  144. } else {
  145. m_storage[metadata.value().offset] = value;
  146. }
  147. }
  148. Value Object::delete_property(PropertyName property_name)
  149. {
  150. ASSERT(property_name.is_valid());
  151. if (property_name.is_number()) {
  152. if (property_name.as_number() < static_cast<i32>(elements().size())) {
  153. elements()[property_name.as_number()] = {};
  154. return Value(true);
  155. }
  156. return Value(true);
  157. }
  158. auto metadata = shape().lookup(property_name.as_string());
  159. if (!metadata.has_value())
  160. return Value(true);
  161. if (!(metadata.value().attributes & Attribute::Configurable))
  162. return Value(false);
  163. size_t deleted_offset = metadata.value().offset;
  164. ensure_shape_is_unique();
  165. shape().remove_property_from_unique_shape(property_name.as_string(), deleted_offset);
  166. m_storage.remove(deleted_offset);
  167. return Value(true);
  168. }
  169. void Object::ensure_shape_is_unique()
  170. {
  171. if (shape().is_unique())
  172. return;
  173. m_shape = m_shape->create_unique_clone();
  174. }
  175. Value Object::get_by_index(i32 property_index) const
  176. {
  177. if (property_index < 0)
  178. return get(String::number(property_index));
  179. const Object* object = this;
  180. while (object) {
  181. if (static_cast<size_t>(property_index) < object->m_elements.size()) {
  182. auto value = object->m_elements[property_index];
  183. if (value.is_empty())
  184. return {};
  185. return value;
  186. }
  187. object = object->prototype();
  188. }
  189. return {};
  190. }
  191. Value Object::get(const FlyString& property_name) const
  192. {
  193. bool ok;
  194. i32 property_index = property_name.to_int(ok);
  195. if (ok && property_index >= 0)
  196. return get_by_index(property_index);
  197. const Object* object = this;
  198. while (object) {
  199. auto value = object->get_own_property(*this, property_name);
  200. if (!value.is_empty())
  201. return value;
  202. object = object->prototype();
  203. }
  204. return {};
  205. }
  206. Value Object::get(PropertyName property_name) const
  207. {
  208. if (property_name.is_number())
  209. return get_by_index(property_name.as_number());
  210. return get(property_name.as_string());
  211. }
  212. void Object::put_by_index(i32 property_index, Value value)
  213. {
  214. ASSERT(!value.is_empty());
  215. if (property_index < 0)
  216. return put(String::number(property_index), value);
  217. // FIXME: Implement some kind of sparse storage for arrays with huge indices.
  218. if (static_cast<size_t>(property_index) >= m_elements.size())
  219. m_elements.resize(property_index + 1);
  220. m_elements[property_index] = value;
  221. }
  222. void Object::put(const FlyString& property_name, Value value)
  223. {
  224. ASSERT(!value.is_empty());
  225. bool ok;
  226. i32 property_index = property_name.to_int(ok);
  227. if (ok && property_index >= 0)
  228. return put_by_index(property_index, value);
  229. // If there's a setter in the prototype chain, we go to the setter.
  230. // Otherwise, it goes in the own property storage.
  231. Object* object = this;
  232. while (object) {
  233. auto metadata = object->shape().lookup(property_name);
  234. if (metadata.has_value()) {
  235. auto value_here = object->m_storage[metadata.value().offset];
  236. if (value_here.is_object() && value_here.as_object().is_native_property()) {
  237. auto& native_property = static_cast<NativeProperty&>(value_here.as_object());
  238. auto& interpreter = const_cast<Object*>(this)->interpreter();
  239. auto& call_frame = interpreter.push_call_frame();
  240. call_frame.this_value = this;
  241. native_property.set(interpreter, value);
  242. interpreter.pop_call_frame();
  243. return;
  244. }
  245. }
  246. object = object->prototype();
  247. }
  248. put_own_property(*this, property_name, Attribute::Configurable | Attribute::Enumerable | Attribute::Writable, value, PutOwnPropertyMode::Put);
  249. }
  250. void Object::put(PropertyName property_name, Value value)
  251. {
  252. if (property_name.is_number())
  253. return put_by_index(property_name.as_number(), value);
  254. return put(property_name.as_string(), value);
  255. }
  256. void Object::put_native_function(const FlyString& property_name, AK::Function<Value(Interpreter&)> native_function, i32 length)
  257. {
  258. auto* function = NativeFunction::create(interpreter(), interpreter().global_object(), property_name, move(native_function));
  259. function->put("length", Value(length));
  260. put(property_name, function);
  261. }
  262. void Object::put_native_property(const FlyString& property_name, AK::Function<Value(Interpreter&)> getter, AK::Function<void(Interpreter&, Value)> setter)
  263. {
  264. put(property_name, heap().allocate<NativeProperty>(move(getter), move(setter)));
  265. }
  266. void Object::visit_children(Cell::Visitor& visitor)
  267. {
  268. Cell::visit_children(visitor);
  269. visitor.visit(m_shape);
  270. for (auto& value : m_storage)
  271. visitor.visit(value);
  272. for (auto& value : m_elements)
  273. visitor.visit(value);
  274. }
  275. bool Object::has_own_property(const FlyString& property_name) const
  276. {
  277. bool ok;
  278. i32 property_index = property_name.to_int(ok);
  279. if (ok && property_index >= 0) {
  280. if (static_cast<size_t>(property_index) >= m_elements.size())
  281. return false;
  282. return !m_elements[property_index].is_empty();
  283. }
  284. return shape().lookup(property_name).has_value();
  285. }
  286. Value Object::to_primitive(PreferredType preferred_type) const
  287. {
  288. Value result = js_undefined();
  289. switch (preferred_type) {
  290. case PreferredType::Default:
  291. case PreferredType::Number: {
  292. result = value_of();
  293. if (result.is_object()) {
  294. result = to_string();
  295. }
  296. break;
  297. }
  298. case PreferredType::String: {
  299. result = to_string();
  300. if (result.is_object())
  301. result = value_of();
  302. break;
  303. }
  304. }
  305. ASSERT(!result.is_object());
  306. return result;
  307. }
  308. Value Object::to_string() const
  309. {
  310. auto to_string_property = get("toString");
  311. if (!to_string_property.is_empty()
  312. && to_string_property.is_object()
  313. && to_string_property.as_object().is_function()) {
  314. auto& to_string_function = static_cast<Function&>(to_string_property.as_object());
  315. return const_cast<Object*>(this)->interpreter().call(&to_string_function, const_cast<Object*>(this));
  316. }
  317. return js_string(heap(), String::format("[object %s]", class_name()));
  318. }
  319. }