MathObject.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Function.h>
  8. #include <AK/Random.h>
  9. #include <LibJS/Runtime/GlobalObject.h>
  10. #include <LibJS/Runtime/MathObject.h>
  11. #include <math.h>
  12. namespace JS {
  13. MathObject::MathObject(GlobalObject& global_object)
  14. : Object(*global_object.object_prototype())
  15. {
  16. }
  17. void MathObject::initialize(GlobalObject& global_object)
  18. {
  19. auto& vm = this->vm();
  20. Object::initialize(global_object);
  21. u8 attr = Attribute::Writable | Attribute::Configurable;
  22. define_native_function(vm.names.abs, abs, 1, attr);
  23. define_native_function(vm.names.random, random, 0, attr);
  24. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  25. define_native_function(vm.names.floor, floor, 1, attr);
  26. define_native_function(vm.names.ceil, ceil, 1, attr);
  27. define_native_function(vm.names.round, round, 1, attr);
  28. define_native_function(vm.names.max, max, 2, attr);
  29. define_native_function(vm.names.min, min, 2, attr);
  30. define_native_function(vm.names.trunc, trunc, 1, attr);
  31. define_native_function(vm.names.sin, sin, 1, attr);
  32. define_native_function(vm.names.cos, cos, 1, attr);
  33. define_native_function(vm.names.tan, tan, 1, attr);
  34. define_native_function(vm.names.pow, pow, 2, attr);
  35. define_native_function(vm.names.exp, exp, 1, attr);
  36. define_native_function(vm.names.expm1, expm1, 1, attr);
  37. define_native_function(vm.names.sign, sign, 1, attr);
  38. define_native_function(vm.names.clz32, clz32, 1, attr);
  39. define_native_function(vm.names.acos, acos, 1, attr);
  40. define_native_function(vm.names.acosh, acosh, 1, attr);
  41. define_native_function(vm.names.asin, asin, 1, attr);
  42. define_native_function(vm.names.asinh, asinh, 1, attr);
  43. define_native_function(vm.names.atan, atan, 1, attr);
  44. define_native_function(vm.names.atanh, atanh, 1, attr);
  45. define_native_function(vm.names.log1p, log1p, 1, attr);
  46. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  47. define_native_function(vm.names.atan2, atan2, 2, attr);
  48. define_native_function(vm.names.fround, fround, 1, attr);
  49. define_native_function(vm.names.hypot, hypot, 2, attr);
  50. define_native_function(vm.names.imul, imul, 2, attr);
  51. define_native_function(vm.names.log, log, 1, attr);
  52. define_native_function(vm.names.log2, log2, 1, attr);
  53. define_native_function(vm.names.log10, log10, 1, attr);
  54. define_native_function(vm.names.sinh, sinh, 1, attr);
  55. define_native_function(vm.names.cosh, cosh, 1, attr);
  56. define_native_function(vm.names.tanh, tanh, 1, attr);
  57. define_property(vm.names.E, Value(M_E), 0);
  58. define_property(vm.names.LN2, Value(M_LN2), 0);
  59. define_property(vm.names.LN10, Value(M_LN10), 0);
  60. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  61. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  62. define_property(vm.names.PI, Value(M_PI), 0);
  63. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  64. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  65. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  66. }
  67. MathObject::~MathObject()
  68. {
  69. }
  70. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  71. {
  72. auto number = vm.argument(0).to_number(global_object);
  73. if (vm.exception())
  74. return {};
  75. if (number.is_nan())
  76. return js_nan();
  77. if (number.is_negative_zero())
  78. return Value(0);
  79. if (number.is_negative_infinity())
  80. return js_infinity();
  81. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  82. }
  83. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  84. {
  85. #ifdef __serenity__
  86. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  87. #else
  88. double r = (double)rand() / (double)RAND_MAX;
  89. #endif
  90. return Value(r);
  91. }
  92. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  93. {
  94. auto number = vm.argument(0).to_number(global_object);
  95. if (vm.exception())
  96. return {};
  97. if (number.is_nan())
  98. return js_nan();
  99. return Value(::sqrt(number.as_double()));
  100. }
  101. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  102. {
  103. auto number = vm.argument(0).to_number(global_object);
  104. if (vm.exception())
  105. return {};
  106. if (number.is_nan())
  107. return js_nan();
  108. return Value(::floor(number.as_double()));
  109. }
  110. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  111. {
  112. auto number = vm.argument(0).to_number(global_object);
  113. if (vm.exception())
  114. return {};
  115. if (number.is_nan())
  116. return js_nan();
  117. auto number_double = number.as_double();
  118. if (number_double < 0 && number_double > -1)
  119. return Value(-0.f);
  120. return Value(::ceil(number.as_double()));
  121. }
  122. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  123. {
  124. auto number = vm.argument(0).to_number(global_object);
  125. if (vm.exception())
  126. return {};
  127. if (number.is_nan())
  128. return js_nan();
  129. double intpart = 0;
  130. double frac = modf(number.as_double(), &intpart);
  131. if (intpart >= 0) {
  132. if (frac >= 0.5)
  133. intpart += 1.0;
  134. } else {
  135. if (frac < -0.5)
  136. intpart -= 1.0;
  137. }
  138. return Value(intpart);
  139. }
  140. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  141. {
  142. if (!vm.argument_count())
  143. return js_negative_infinity();
  144. auto max = vm.argument(0).to_number(global_object);
  145. if (vm.exception())
  146. return {};
  147. for (size_t i = 1; i < vm.argument_count(); ++i) {
  148. auto cur = vm.argument(i).to_number(global_object);
  149. if (vm.exception())
  150. return {};
  151. if ((max.is_negative_zero() && cur.is_positive_zero()) || cur.as_double() > max.as_double())
  152. max = cur;
  153. }
  154. return max;
  155. }
  156. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  157. {
  158. if (!vm.argument_count())
  159. return js_infinity();
  160. auto min = vm.argument(0).to_number(global_object);
  161. if (vm.exception())
  162. return {};
  163. for (size_t i = 1; i < vm.argument_count(); ++i) {
  164. auto cur = vm.argument(i).to_number(global_object);
  165. if (vm.exception())
  166. return {};
  167. if ((min.is_positive_zero() && cur.is_negative_zero()) || cur.as_double() < min.as_double())
  168. min = cur;
  169. }
  170. return min;
  171. }
  172. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  173. {
  174. auto number = vm.argument(0).to_number(global_object);
  175. if (vm.exception())
  176. return {};
  177. if (number.is_nan())
  178. return js_nan();
  179. if (number.as_double() < 0)
  180. return MathObject::ceil(vm, global_object);
  181. return MathObject::floor(vm, global_object);
  182. }
  183. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  184. {
  185. auto number = vm.argument(0).to_number(global_object);
  186. if (vm.exception())
  187. return {};
  188. if (number.is_nan())
  189. return js_nan();
  190. return Value(::sin(number.as_double()));
  191. }
  192. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  193. {
  194. auto number = vm.argument(0).to_number(global_object);
  195. if (vm.exception())
  196. return {};
  197. if (number.is_nan())
  198. return js_nan();
  199. return Value(::cos(number.as_double()));
  200. }
  201. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  202. {
  203. auto number = vm.argument(0).to_number(global_object);
  204. if (vm.exception())
  205. return {};
  206. if (number.is_nan())
  207. return js_nan();
  208. return Value(::tan(number.as_double()));
  209. }
  210. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  211. {
  212. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  213. }
  214. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  215. {
  216. auto number = vm.argument(0).to_number(global_object);
  217. if (vm.exception())
  218. return {};
  219. if (number.is_nan())
  220. return js_nan();
  221. return Value(::exp(number.as_double()));
  222. }
  223. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  224. {
  225. auto number = vm.argument(0).to_number(global_object);
  226. if (vm.exception())
  227. return {};
  228. if (number.is_nan())
  229. return js_nan();
  230. return Value(::expm1(number.as_double()));
  231. }
  232. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  233. {
  234. auto number = vm.argument(0).to_number(global_object);
  235. if (vm.exception())
  236. return {};
  237. if (number.is_positive_zero())
  238. return Value(0);
  239. if (number.is_negative_zero())
  240. return Value(-0.0);
  241. if (number.as_double() > 0)
  242. return Value(1);
  243. if (number.as_double() < 0)
  244. return Value(-1);
  245. return js_nan();
  246. }
  247. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  248. {
  249. auto number = vm.argument(0).to_number(global_object);
  250. if (vm.exception())
  251. return {};
  252. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  253. return Value(32);
  254. return Value(__builtin_clz((unsigned)number.as_double()));
  255. }
  256. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  257. {
  258. auto number = vm.argument(0).to_number(global_object);
  259. if (vm.exception())
  260. return {};
  261. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  262. return js_nan();
  263. if (number.as_double() == 1)
  264. return Value(0);
  265. return Value(::acos(number.as_double()));
  266. }
  267. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  268. {
  269. auto number = vm.argument(0).to_number(global_object);
  270. if (vm.exception())
  271. return {};
  272. if (number.as_double() < 1)
  273. return js_nan();
  274. return Value(::acosh(number.as_double()));
  275. }
  276. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  277. {
  278. auto number = vm.argument(0).to_number(global_object);
  279. if (vm.exception())
  280. return {};
  281. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  282. return number;
  283. return Value(::asin(number.as_double()));
  284. }
  285. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  286. {
  287. auto number = vm.argument(0).to_number(global_object);
  288. if (vm.exception())
  289. return {};
  290. return Value(::asinh(number.as_double()));
  291. }
  292. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  293. {
  294. auto number = vm.argument(0).to_number(global_object);
  295. if (vm.exception())
  296. return {};
  297. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  298. return number;
  299. if (number.is_positive_infinity())
  300. return Value(M_PI_2);
  301. if (number.is_negative_infinity())
  302. return Value(-M_PI_2);
  303. return Value(::atan(number.as_double()));
  304. }
  305. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  306. {
  307. auto number = vm.argument(0).to_number(global_object);
  308. if (vm.exception())
  309. return {};
  310. if (number.as_double() > 1 || number.as_double() < -1)
  311. return js_nan();
  312. return Value(::atanh(number.as_double()));
  313. }
  314. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  315. {
  316. auto number = vm.argument(0).to_number(global_object);
  317. if (vm.exception())
  318. return {};
  319. if (number.as_double() < -1)
  320. return js_nan();
  321. return Value(::log1p(number.as_double()));
  322. }
  323. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  324. {
  325. auto number = vm.argument(0).to_number(global_object);
  326. if (vm.exception())
  327. return {};
  328. return Value(::cbrt(number.as_double()));
  329. }
  330. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  331. {
  332. auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
  333. auto pi_4 = M_PI_2 / 2;
  334. auto three_pi_4 = pi_4 + M_PI_2;
  335. if (vm.exception())
  336. return {};
  337. if (x.is_positive_zero()) {
  338. if (y.is_positive_zero() || y.is_negative_zero())
  339. return y;
  340. else
  341. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  342. }
  343. if (x.is_negative_zero()) {
  344. if (y.is_positive_zero())
  345. return Value(M_PI);
  346. else if (y.is_negative_zero())
  347. return Value(-M_PI);
  348. else
  349. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  350. }
  351. if (x.is_positive_infinity()) {
  352. if (y.is_infinity())
  353. return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
  354. else
  355. return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
  356. }
  357. if (x.is_negative_infinity()) {
  358. if (y.is_infinity())
  359. return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
  360. else
  361. return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
  362. }
  363. if (y.is_infinity())
  364. return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
  365. if (y.is_positive_zero())
  366. return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
  367. if (y.is_negative_zero())
  368. return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
  369. return Value(::atan2(y.as_double(), x.as_double()));
  370. }
  371. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  372. {
  373. auto number = vm.argument(0).to_number(global_object);
  374. if (vm.exception())
  375. return {};
  376. if (number.is_nan())
  377. return js_nan();
  378. return Value((float)number.as_double());
  379. }
  380. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  381. {
  382. if (!vm.argument_count())
  383. return Value(0);
  384. auto hypot = vm.argument(0).to_number(global_object);
  385. if (vm.exception())
  386. return {};
  387. hypot = Value(hypot.as_double() * hypot.as_double());
  388. for (size_t i = 1; i < vm.argument_count(); ++i) {
  389. auto cur = vm.argument(i).to_number(global_object);
  390. if (vm.exception())
  391. return {};
  392. hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
  393. }
  394. return Value(::sqrt(hypot.as_double()));
  395. }
  396. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  397. {
  398. auto a = vm.argument(0).to_u32(global_object);
  399. if (vm.exception())
  400. return {};
  401. auto b = vm.argument(1).to_u32(global_object);
  402. if (vm.exception())
  403. return {};
  404. return Value(static_cast<i32>(a * b));
  405. }
  406. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  407. {
  408. auto number = vm.argument(0).to_number(global_object);
  409. if (vm.exception())
  410. return {};
  411. if (number.as_double() < 0)
  412. return js_nan();
  413. return Value(::log(number.as_double()));
  414. }
  415. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  416. {
  417. auto number = vm.argument(0).to_number(global_object);
  418. if (vm.exception())
  419. return {};
  420. if (number.as_double() < 0)
  421. return js_nan();
  422. return Value(::log2(number.as_double()));
  423. }
  424. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  425. {
  426. auto number = vm.argument(0).to_number(global_object);
  427. if (vm.exception())
  428. return {};
  429. if (number.as_double() < 0)
  430. return js_nan();
  431. return Value(::log10(number.as_double()));
  432. }
  433. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  434. {
  435. auto number = vm.argument(0).to_number(global_object);
  436. if (vm.exception())
  437. return {};
  438. if (number.is_nan())
  439. return js_nan();
  440. return Value(::sinh(number.as_double()));
  441. }
  442. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  443. {
  444. auto number = vm.argument(0).to_number(global_object);
  445. if (vm.exception())
  446. return {};
  447. if (number.is_nan())
  448. return js_nan();
  449. return Value(::cosh(number.as_double()));
  450. }
  451. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  452. {
  453. auto number = vm.argument(0).to_number(global_object);
  454. if (vm.exception())
  455. return {};
  456. if (number.is_nan())
  457. return js_nan();
  458. if (number.is_positive_infinity())
  459. return Value(1);
  460. if (number.is_negative_infinity())
  461. return Value(-1);
  462. return Value(::tanh(number.as_double()));
  463. }
  464. }