123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- /*
- * Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include <Kernel/Bus/PCI/API.h>
- #include <Kernel/Bus/PCI/Definitions.h>
- #include <Kernel/IOWindow.h>
- namespace Kernel {
- #if ARCH(X86_64)
- ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_io_space(IOAddress address, u64 space_length)
- {
- VERIFY(!Checked<u64>::addition_would_overflow(address.get(), space_length));
- auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(address.get(), space_length)));
- return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
- }
- IOWindow::IOWindow(NonnullOwnPtr<IOAddressData> io_range)
- : m_space_type(SpaceType::IO)
- , m_io_range(move(io_range))
- {
- }
- #endif
- ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset, u64 space_length)
- {
- #if ARCH(X86_64)
- if (m_space_type == SpaceType::IO) {
- VERIFY(m_io_range);
- if (Checked<u64>::addition_would_overflow(m_io_range->address(), space_length))
- return Error::from_errno(EOVERFLOW);
- auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(as_io_address().offset(offset).get(), space_length)));
- return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
- }
- #endif
- VERIFY(space_type() == SpaceType::Memory);
- VERIFY(m_memory_mapped_range);
- if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get(), offset))
- return Error::from_errno(EOVERFLOW);
- if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get() + offset, space_length))
- return Error::from_errno(EOVERFLOW);
- auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(m_memory_mapped_range->paddr.offset(offset), space_length, Memory::Region::Access::ReadWrite));
- return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
- }
- ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset)
- {
- #if ARCH(X86_64)
- if (m_space_type == SpaceType::IO) {
- VERIFY(m_io_range);
- VERIFY(m_io_range->space_length() >= offset);
- return create_from_io_window_with_offset(offset, m_io_range->space_length() - offset);
- }
- #endif
- VERIFY(space_type() == SpaceType::Memory);
- VERIFY(m_memory_mapped_range);
- VERIFY(m_memory_mapped_range->length >= offset);
- return create_from_io_window_with_offset(offset, m_memory_mapped_range->length - offset);
- }
- ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar, u64 space_length)
- {
- u64 pci_bar_value = PCI::get_BAR(pci_device_identifier, pci_bar);
- auto pci_bar_space_type = PCI::get_BAR_space_type(pci_bar_value);
- if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace) {
- // FIXME: In theory, BAR5 cannot be assigned to 64 bit as it is the last one...
- // however, there might be 64 bit BAR5 for real bare metal hardware, so remove this
- // if it makes a problem.
- if (pci_bar == PCI::HeaderType0BaseRegister::BAR5) {
- return Error::from_errno(EINVAL);
- }
- u64 next_pci_bar_value = PCI::get_BAR(pci_device_identifier, static_cast<PCI::HeaderType0BaseRegister>(to_underlying(pci_bar) + 1));
- pci_bar_value |= next_pci_bar_value << 32;
- }
- auto pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
- if (pci_bar_space_size < space_length)
- return Error::from_errno(EIO);
- if (pci_bar_space_type == PCI::BARSpaceType::IOSpace) {
- #if ARCH(X86_64)
- if (Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
- return Error::from_errno(EOVERFLOW);
- auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData((pci_bar_value & 0xfffffffc), space_length)));
- return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
- #else
- // Note: For non-x86 platforms, IO PCI BARs are simply not useable.
- return Error::from_errno(ENOTSUP);
- #endif
- }
- if (pci_bar_space_type == PCI::BARSpaceType::Memory32BitSpace && Checked<u32>::addition_would_overflow(pci_bar_value, space_length))
- return Error::from_errno(EOVERFLOW);
- if (pci_bar_space_type == PCI::BARSpaceType::Memory16BitSpace && Checked<u16>::addition_would_overflow(pci_bar_value, space_length))
- return Error::from_errno(EOVERFLOW);
- if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace && Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
- return Error::from_errno(EOVERFLOW);
- auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(PhysicalAddress(pci_bar_value & 0xfffffff0), space_length, Memory::Region::Access::ReadWrite));
- return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
- }
- ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar)
- {
- u64 pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
- return create_for_pci_device_bar(pci_device_identifier, pci_bar, pci_bar_space_size);
- }
- IOWindow::IOWindow(NonnullOwnPtr<Memory::TypedMapping<u8 volatile>> memory_mapped_range)
- : m_space_type(SpaceType::Memory)
- , m_memory_mapped_range(move(memory_mapped_range))
- {
- }
- IOWindow::~IOWindow() = default;
- bool IOWindow::is_access_aligned(u64 offset, size_t byte_size_access) const
- {
- return (offset % byte_size_access) == 0;
- }
- bool IOWindow::is_access_in_range(u64 offset, size_t byte_size_access) const
- {
- if (Checked<u64>::addition_would_overflow(offset, byte_size_access))
- return false;
- #if ARCH(X86_64)
- if (m_space_type == SpaceType::IO) {
- VERIFY(m_io_range);
- VERIFY(!Checked<u64>::addition_would_overflow(m_io_range->address(), m_io_range->space_length()));
- // To understand how we treat IO address space with the corresponding calculation, the Intel Software Developer manual
- // helps us to understand the layout of the IO address space -
- //
- // Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture, 16.3 I/O ADDRESS SPACE, page 16-1 wrote:
- // Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port.
- // In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space.
- // Like words in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle.
- // Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...).
- // The processor supports data transfers to unaligned ports, but there is a performance penalty because one or more
- // extra bus cycle must be used.
- return (m_io_range->address() + m_io_range->space_length()) >= (offset + byte_size_access);
- }
- #endif
- VERIFY(space_type() == SpaceType::Memory);
- VERIFY(m_memory_mapped_range);
- VERIFY(!Checked<u64>::addition_would_overflow(m_memory_mapped_range->offset, m_memory_mapped_range->length));
- return (m_memory_mapped_range->offset + m_memory_mapped_range->length) >= (offset + byte_size_access);
- }
- u8 IOWindow::read8(u64 offset)
- {
- VERIFY(is_access_in_range(offset, sizeof(u8)));
- u8 data { 0 };
- in<u8>(offset, data);
- return data;
- }
- u16 IOWindow::read16(u64 offset)
- {
- // Note: Although it might be OK to allow unaligned access on regular memory,
- // for memory mapped IO access, it should always be considered a bug.
- // The same goes for port mapped IO access, because in x86 unaligned access to ports
- // is possible but there's a performance penalty.
- VERIFY(is_access_in_range(offset, sizeof(u16)));
- VERIFY(is_access_aligned(offset, sizeof(u16)));
- u16 data { 0 };
- in<u16>(offset, data);
- return data;
- }
- u32 IOWindow::read32(u64 offset)
- {
- // Note: Although it might be OK to allow unaligned access on regular memory,
- // for memory mapped IO access, it should always be considered a bug.
- // The same goes for port mapped IO access, because in x86 unaligned access to ports
- // is possible but there's a performance penalty.
- VERIFY(is_access_in_range(offset, sizeof(u32)));
- VERIFY(is_access_aligned(offset, sizeof(u32)));
- u32 data { 0 };
- in<u32>(offset, data);
- return data;
- }
- void IOWindow::write8(u64 offset, u8 data)
- {
- VERIFY(is_access_in_range(offset, sizeof(u8)));
- out<u8>(offset, data);
- }
- void IOWindow::write16(u64 offset, u16 data)
- {
- // Note: Although it might be OK to allow unaligned access on regular memory,
- // for memory mapped IO access, it should always be considered a bug.
- // The same goes for port mapped IO access, because in x86 unaligned access to ports
- // is possible but there's a performance penalty.
- VERIFY(is_access_in_range(offset, sizeof(u16)));
- VERIFY(is_access_aligned(offset, sizeof(u16)));
- out<u16>(offset, data);
- }
- void IOWindow::write32(u64 offset, u32 data)
- {
- // Note: Although it might be OK to allow unaligned access on regular memory,
- // for memory mapped IO access, it should always be considered a bug.
- // The same goes for port mapped IO access, because in x86 unaligned access to ports
- // is possible but there's a performance penalty.
- VERIFY(is_access_in_range(offset, sizeof(u32)));
- VERIFY(is_access_aligned(offset, sizeof(u32)));
- out<u32>(offset, data);
- }
- void IOWindow::write32_unaligned(u64 offset, u32 data)
- {
- // Note: We only verify that we access IO in the expected range.
- // Note: for port mapped IO access, because in x86 unaligned access to ports
- // is possible but there's a performance penalty, we can still allow that to happen.
- // However, it should be noted that most cases should not use unaligned access
- // to hardware IO, so this is a valid case in emulators or hypervisors only.
- // Note: Using this for memory mapped IO will fail for unaligned access, because
- // there's no valid use case for it (yet).
- VERIFY(space_type() != SpaceType::Memory);
- VERIFY(is_access_in_range(offset, sizeof(u32)));
- out<u32>(offset, data);
- }
- u32 IOWindow::read32_unaligned(u64 offset)
- {
- // Note: We only verify that we access IO in the expected range.
- // Note: for port mapped IO access, because in x86 unaligned access to ports
- // is possible but there's a performance penalty, we can still allow that to happen.
- // However, it should be noted that most cases should not use unaligned access
- // to hardware IO, so this is a valid case in emulators or hypervisors only.
- // Note: Using this for memory mapped IO will fail for unaligned access, because
- // there's no valid use case for it (yet).
- VERIFY(space_type() != SpaceType::Memory);
- VERIFY(is_access_in_range(offset, sizeof(u32)));
- u32 data { 0 };
- in<u32>(offset, data);
- return data;
- }
- PhysicalAddress IOWindow::as_physical_memory_address() const
- {
- VERIFY(space_type() == SpaceType::Memory);
- VERIFY(m_memory_mapped_range);
- return m_memory_mapped_range->paddr;
- }
- u8 volatile* IOWindow::as_memory_address_pointer()
- {
- VERIFY(space_type() == SpaceType::Memory);
- VERIFY(m_memory_mapped_range);
- return m_memory_mapped_range->ptr();
- }
- #if ARCH(X86_64)
- IOAddress IOWindow::as_io_address() const
- {
- VERIFY(space_type() == SpaceType::IO);
- VERIFY(m_io_range);
- return IOAddress(m_io_range->address());
- }
- #endif
- }
|