HandshakeServer.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. /*
  2. * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
  3. * Copyright (c) 2022, Michiel Visser <opensource@webmichiel.nl>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Debug.h>
  8. #include <AK/Endian.h>
  9. #include <AK/Random.h>
  10. #include <LibCore/Timer.h>
  11. #include <LibCrypto/ASN1/DER.h>
  12. #include <LibCrypto/Curves/Ed25519.h>
  13. #include <LibCrypto/Curves/EllipticCurve.h>
  14. #include <LibCrypto/Curves/SECPxxxr1.h>
  15. #include <LibCrypto/Curves/X25519.h>
  16. #include <LibCrypto/Curves/X448.h>
  17. #include <LibCrypto/PK/Code/EMSA_PKCS1_V1_5.h>
  18. #include <LibTLS/TLSv12.h>
  19. namespace TLS {
  20. ssize_t TLSv12::handle_server_hello(ReadonlyBytes buffer, WritePacketStage& write_packets)
  21. {
  22. write_packets = WritePacketStage::Initial;
  23. if (m_context.connection_status != ConnectionStatus::Disconnected && m_context.connection_status != ConnectionStatus::Renegotiating) {
  24. dbgln("unexpected hello message");
  25. return (i8)Error::UnexpectedMessage;
  26. }
  27. ssize_t res = 0;
  28. size_t min_hello_size = 41;
  29. if (min_hello_size > buffer.size()) {
  30. dbgln("need more data");
  31. return (i8)Error::NeedMoreData;
  32. }
  33. size_t following_bytes = buffer[0] * 0x10000 + buffer[1] * 0x100 + buffer[2];
  34. res += 3;
  35. if (buffer.size() - res < following_bytes) {
  36. dbgln("not enough data after header: {} < {}", buffer.size() - res, following_bytes);
  37. return (i8)Error::NeedMoreData;
  38. }
  39. if (buffer.size() - res < 2) {
  40. dbgln("not enough data for version");
  41. return (i8)Error::NeedMoreData;
  42. }
  43. auto version = static_cast<ProtocolVersion>(AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res))));
  44. res += 2;
  45. if (!supports_version(version))
  46. return (i8)Error::NotSafe;
  47. memcpy(m_context.remote_random, buffer.offset_pointer(res), sizeof(m_context.remote_random));
  48. res += sizeof(m_context.remote_random);
  49. u8 session_length = buffer[res++];
  50. if (buffer.size() - res < session_length) {
  51. dbgln("not enough data for session id");
  52. return (i8)Error::NeedMoreData;
  53. }
  54. if (session_length && session_length <= 32) {
  55. memcpy(m_context.session_id, buffer.offset_pointer(res), session_length);
  56. m_context.session_id_size = session_length;
  57. if constexpr (TLS_DEBUG) {
  58. dbgln("Remote session ID:");
  59. print_buffer(ReadonlyBytes { m_context.session_id, session_length });
  60. }
  61. } else {
  62. m_context.session_id_size = 0;
  63. }
  64. res += session_length;
  65. if (buffer.size() - res < 2) {
  66. dbgln("not enough data for cipher suite listing");
  67. return (i8)Error::NeedMoreData;
  68. }
  69. auto cipher = static_cast<CipherSuite>(AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res))));
  70. res += 2;
  71. if (!supports_cipher(cipher)) {
  72. m_context.cipher = CipherSuite::TLS_NULL_WITH_NULL_NULL;
  73. dbgln("No supported cipher could be agreed upon");
  74. return (i8)Error::NoCommonCipher;
  75. }
  76. m_context.cipher = cipher;
  77. dbgln_if(TLS_DEBUG, "Cipher: {}", enum_to_string(cipher));
  78. // Simplification: We only support handshake hash functions via HMAC
  79. m_context.handshake_hash.initialize(hmac_hash());
  80. // Compression method
  81. if (buffer.size() - res < 1)
  82. return (i8)Error::NeedMoreData;
  83. u8 compression = buffer[res++];
  84. if (compression != 0)
  85. return (i8)Error::CompressionNotSupported;
  86. if (m_context.connection_status != ConnectionStatus::Renegotiating)
  87. m_context.connection_status = ConnectionStatus::Negotiating;
  88. if (m_context.is_server) {
  89. dbgln("unsupported: server mode");
  90. write_packets = WritePacketStage::ServerHandshake;
  91. }
  92. // Presence of extensions is determined by availability of bytes after compression_method
  93. if (buffer.size() - res >= 2) {
  94. auto extensions_bytes_total = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res += 2)));
  95. dbgln_if(TLS_DEBUG, "Extensions bytes total: {}", extensions_bytes_total);
  96. }
  97. while (buffer.size() - res >= 4) {
  98. auto extension_type = (ExtensionType)AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res)));
  99. res += 2;
  100. u16 extension_length = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res)));
  101. res += 2;
  102. dbgln_if(TLS_DEBUG, "Extension {} with length {}", enum_to_string(extension_type), extension_length);
  103. if (buffer.size() - res < extension_length)
  104. return (i8)Error::NeedMoreData;
  105. if (extension_type == ExtensionType::SERVER_NAME) {
  106. // RFC6066 section 3: SNI extension_data can be empty in the server hello
  107. if (extension_length > 0) {
  108. // ServerNameList total size
  109. if (buffer.size() - res < 2)
  110. return (i8)Error::NeedMoreData;
  111. auto sni_name_list_bytes = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res += 2)));
  112. dbgln_if(TLS_DEBUG, "SNI: expecting ServerNameList of {} bytes", sni_name_list_bytes);
  113. // Exactly one ServerName should be present
  114. if (buffer.size() - res < 3)
  115. return (i8)Error::NeedMoreData;
  116. auto sni_name_type = (NameType)(*(u8 const*)buffer.offset_pointer(res++));
  117. auto sni_name_length = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res += 2)));
  118. if (sni_name_type != NameType::HOST_NAME)
  119. return (i8)Error::NotUnderstood;
  120. if (sizeof(sni_name_type) + sizeof(sni_name_length) + sni_name_length != sni_name_list_bytes)
  121. return (i8)Error::BrokenPacket;
  122. // Read out the host_name
  123. if (buffer.size() - res < sni_name_length)
  124. return (i8)Error::NeedMoreData;
  125. m_context.extensions.SNI = ByteString { (char const*)buffer.offset_pointer(res), sni_name_length };
  126. res += sni_name_length;
  127. dbgln("SNI host_name: {}", m_context.extensions.SNI);
  128. }
  129. } else if (extension_type == ExtensionType::APPLICATION_LAYER_PROTOCOL_NEGOTIATION && m_context.alpn.size()) {
  130. if (buffer.size() - res > 2) {
  131. auto alpn_length = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(res)));
  132. if (alpn_length && alpn_length <= extension_length - 2) {
  133. u8 const* alpn = buffer.offset_pointer(res + 2);
  134. size_t alpn_position = 0;
  135. while (alpn_position < alpn_length) {
  136. u8 alpn_size = alpn[alpn_position++];
  137. if (alpn_size + alpn_position >= extension_length)
  138. break;
  139. ByteString alpn_str { (char const*)alpn + alpn_position, alpn_length };
  140. if (alpn_size && m_context.alpn.contains_slow(alpn_str)) {
  141. m_context.negotiated_alpn = alpn_str;
  142. dbgln("negotiated alpn: {}", alpn_str);
  143. break;
  144. }
  145. alpn_position += alpn_length;
  146. if (!m_context.is_server) // server hello must contain one ALPN
  147. break;
  148. }
  149. }
  150. }
  151. res += extension_length;
  152. } else if (extension_type == ExtensionType::SIGNATURE_ALGORITHMS) {
  153. dbgln("supported signatures: ");
  154. print_buffer(buffer.slice(res, extension_length));
  155. res += extension_length;
  156. // FIXME: what are we supposed to do here?
  157. } else if (extension_type == ExtensionType::EC_POINT_FORMATS) {
  158. // RFC8422 section 5.2: A server that selects an ECC cipher suite in response to a ClientHello message
  159. // including a Supported Point Formats Extension appends this extension (along with others) to its
  160. // ServerHello message, enumerating the point formats it can parse. The Supported Point Formats Extension,
  161. // when used, MUST contain the value 0 (uncompressed) as one of the items in the list of point formats.
  162. //
  163. // The current implementation only supports uncompressed points, and the server is required to support
  164. // uncompressed points. Therefore, this extension can be safely ignored as it should always inform us
  165. // that the server supports uncompressed points.
  166. res += extension_length;
  167. } else if (extension_type == ExtensionType::EXTENDED_MASTER_SECRET) {
  168. m_context.extensions.extended_master_secret = true;
  169. res += extension_length;
  170. } else {
  171. dbgln("Encountered unknown extension {} with length {}", enum_to_string(extension_type), extension_length);
  172. res += extension_length;
  173. }
  174. }
  175. return res;
  176. }
  177. ssize_t TLSv12::handle_server_hello_done(ReadonlyBytes buffer)
  178. {
  179. if (buffer.size() < 3)
  180. return (i8)Error::NeedMoreData;
  181. size_t size = buffer[0] * 0x10000 + buffer[1] * 0x100 + buffer[2];
  182. if (buffer.size() - 3 < size)
  183. return (i8)Error::NeedMoreData;
  184. return size + 3;
  185. }
  186. ByteBuffer TLSv12::build_server_key_exchange()
  187. {
  188. dbgln("FIXME: build_server_key_exchange");
  189. return {};
  190. }
  191. ssize_t TLSv12::handle_server_key_exchange(ReadonlyBytes buffer)
  192. {
  193. switch (get_key_exchange_algorithm(m_context.cipher)) {
  194. case KeyExchangeAlgorithm::RSA:
  195. case KeyExchangeAlgorithm::DH_DSS:
  196. case KeyExchangeAlgorithm::DH_RSA:
  197. // RFC 5246 section 7.4.3. Server Key Exchange Message
  198. // It is not legal to send the server key exchange message for RSA, DH_DSS, DH_RSA
  199. dbgln("Server key exchange received for RSA, DH_DSS or DH_RSA is not legal");
  200. return (i8)Error::UnexpectedMessage;
  201. case KeyExchangeAlgorithm::DHE_DSS:
  202. dbgln("Server key exchange for DHE_DSS is not implemented");
  203. TODO();
  204. break;
  205. case KeyExchangeAlgorithm::DHE_RSA:
  206. return handle_dhe_rsa_server_key_exchange(buffer);
  207. case KeyExchangeAlgorithm::DH_anon:
  208. dbgln("Server key exchange for DH_anon is not implemented");
  209. TODO();
  210. break;
  211. case KeyExchangeAlgorithm::ECDHE_RSA:
  212. return handle_ecdhe_rsa_server_key_exchange(buffer);
  213. case KeyExchangeAlgorithm::ECDHE_ECDSA:
  214. return handle_ecdhe_ecdsa_server_key_exchange(buffer);
  215. case KeyExchangeAlgorithm::ECDH_ECDSA:
  216. case KeyExchangeAlgorithm::ECDH_RSA:
  217. case KeyExchangeAlgorithm::ECDH_anon:
  218. dbgln("Server key exchange for ECDHE algorithms is not implemented");
  219. TODO();
  220. break;
  221. default:
  222. dbgln("Unknown server key exchange algorithm");
  223. VERIFY_NOT_REACHED();
  224. break;
  225. }
  226. return 0;
  227. }
  228. ssize_t TLSv12::handle_dhe_rsa_server_key_exchange(ReadonlyBytes buffer)
  229. {
  230. auto dh_p_length = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(3)));
  231. auto dh_p = buffer.slice(5, dh_p_length);
  232. auto p_result = ByteBuffer::copy(dh_p);
  233. if (p_result.is_error()) {
  234. dbgln("dhe_rsa_server_key_exchange failed: Not enough memory");
  235. return (i8)Error::OutOfMemory;
  236. }
  237. m_context.server_diffie_hellman_params.p = p_result.release_value();
  238. auto dh_g_length = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(5 + dh_p_length)));
  239. auto dh_g = buffer.slice(7 + dh_p_length, dh_g_length);
  240. auto g_result = ByteBuffer::copy(dh_g);
  241. if (g_result.is_error()) {
  242. dbgln("dhe_rsa_server_key_exchange failed: Not enough memory");
  243. return (i8)Error::OutOfMemory;
  244. }
  245. m_context.server_diffie_hellman_params.g = g_result.release_value();
  246. auto dh_Ys_length = AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(7 + dh_p_length + dh_g_length)));
  247. auto dh_Ys = buffer.slice(9 + dh_p_length + dh_g_length, dh_Ys_length);
  248. auto Ys_result = ByteBuffer::copy(dh_Ys);
  249. if (Ys_result.is_error()) {
  250. dbgln("dhe_rsa_server_key_exchange failed: Not enough memory");
  251. return (i8)Error::OutOfMemory;
  252. }
  253. m_context.server_diffie_hellman_params.Ys = Ys_result.release_value();
  254. if constexpr (TLS_DEBUG) {
  255. dbgln("dh_p: {:hex-dump}", dh_p);
  256. dbgln("dh_g: {:hex-dump}", dh_g);
  257. dbgln("dh_Ys: {:hex-dump}", dh_Ys);
  258. }
  259. auto server_key_info = buffer.slice(3, 6 + dh_p_length + dh_g_length + dh_Ys_length);
  260. auto signature = buffer.slice(9 + dh_p_length + dh_g_length + dh_Ys_length);
  261. return verify_rsa_server_key_exchange(server_key_info, signature);
  262. }
  263. ssize_t TLSv12::handle_ecdhe_server_key_exchange(ReadonlyBytes buffer, u8& server_public_key_length)
  264. {
  265. if (buffer.size() < 7)
  266. return (i8)Error::NeedMoreData;
  267. auto curve_type = buffer[3];
  268. if (curve_type != (u8)ECCurveType::NAMED_CURVE)
  269. return (i8)Error::NotUnderstood;
  270. auto curve = static_cast<SupportedGroup>(AK::convert_between_host_and_network_endian(ByteReader::load16(buffer.offset_pointer(4))));
  271. if (!m_context.options.elliptic_curves.contains_slow(curve))
  272. return (i8)Error::NotUnderstood;
  273. switch ((SupportedGroup)curve) {
  274. case SupportedGroup::X25519:
  275. m_context.server_key_exchange_curve = make<Crypto::Curves::X25519>();
  276. break;
  277. case SupportedGroup::X448:
  278. m_context.server_key_exchange_curve = make<Crypto::Curves::X448>();
  279. break;
  280. case SupportedGroup::SECP256R1:
  281. m_context.server_key_exchange_curve = make<Crypto::Curves::SECP256r1>();
  282. break;
  283. case SupportedGroup::SECP384R1:
  284. m_context.server_key_exchange_curve = make<Crypto::Curves::SECP384r1>();
  285. break;
  286. default:
  287. return (i8)Error::NotUnderstood;
  288. }
  289. server_public_key_length = buffer[6];
  290. if (server_public_key_length != m_context.server_key_exchange_curve->key_size())
  291. return (i8)Error::NotUnderstood;
  292. if (buffer.size() < 7u + server_public_key_length)
  293. return (i8)Error::NeedMoreData;
  294. auto server_public_key = buffer.slice(7, server_public_key_length);
  295. auto server_public_key_copy_result = ByteBuffer::copy(server_public_key);
  296. if (server_public_key_copy_result.is_error()) {
  297. dbgln("ecdhe_rsa_server_key_exchange failed: Not enough memory");
  298. return (i8)Error::OutOfMemory;
  299. }
  300. m_context.server_diffie_hellman_params.p = server_public_key_copy_result.release_value();
  301. if constexpr (TLS_DEBUG) {
  302. dbgln("ECDHE server public key: {:hex-dump}", server_public_key);
  303. }
  304. return 0;
  305. }
  306. ssize_t TLSv12::handle_ecdhe_rsa_server_key_exchange(ReadonlyBytes buffer)
  307. {
  308. u8 server_public_key_length;
  309. if (auto result = handle_ecdhe_server_key_exchange(buffer, server_public_key_length)) {
  310. return result;
  311. }
  312. auto server_key_info = buffer.slice(3, 4 + server_public_key_length);
  313. auto signature = buffer.slice(7 + server_public_key_length);
  314. return verify_rsa_server_key_exchange(server_key_info, signature);
  315. }
  316. ssize_t TLSv12::verify_rsa_server_key_exchange(ReadonlyBytes server_key_info_buffer, ReadonlyBytes signature_buffer)
  317. {
  318. auto signature_hash = signature_buffer[0];
  319. auto signature_algorithm = static_cast<SignatureAlgorithm>(signature_buffer[1]);
  320. if (signature_algorithm != SignatureAlgorithm::RSA) {
  321. dbgln("verify_rsa_server_key_exchange failed: Signature algorithm is not RSA, instead {}", enum_to_string(signature_algorithm));
  322. return (i8)Error::NotUnderstood;
  323. }
  324. auto signature_length = AK::convert_between_host_and_network_endian(ByteReader::load16(signature_buffer.offset_pointer(2)));
  325. auto signature = signature_buffer.slice(4, signature_length);
  326. if (m_context.certificates.is_empty()) {
  327. dbgln("verify_rsa_server_key_exchange failed: Attempting to verify signature without certificates");
  328. return (i8)Error::NotSafe;
  329. }
  330. // RFC5246 section 7.4.2: The sender's certificate MUST come first in the list.
  331. auto certificate_public_key = m_context.certificates.first().public_key;
  332. Crypto::PK::RSAPrivateKey dummy_private_key;
  333. auto rsa = Crypto::PK::RSA(certificate_public_key.rsa, dummy_private_key);
  334. auto signature_verify_buffer_result = ByteBuffer::create_uninitialized(signature_length);
  335. if (signature_verify_buffer_result.is_error()) {
  336. dbgln("verify_rsa_server_key_exchange failed: Not enough memory");
  337. return (i8)Error::OutOfMemory;
  338. }
  339. auto signature_verify_buffer = signature_verify_buffer_result.release_value();
  340. auto signature_verify_bytes = signature_verify_buffer.bytes();
  341. rsa.verify(signature, signature_verify_bytes);
  342. auto message_result = ByteBuffer::create_uninitialized(64 + server_key_info_buffer.size());
  343. if (message_result.is_error()) {
  344. dbgln("verify_rsa_server_key_exchange failed: Not enough memory");
  345. return (i8)Error::OutOfMemory;
  346. }
  347. auto message = message_result.release_value();
  348. message.overwrite(0, m_context.local_random, 32);
  349. message.overwrite(32, m_context.remote_random, 32);
  350. message.overwrite(64, server_key_info_buffer.data(), server_key_info_buffer.size());
  351. Crypto::Hash::HashKind hash_kind;
  352. switch ((HashAlgorithm)signature_hash) {
  353. case HashAlgorithm::SHA1:
  354. hash_kind = Crypto::Hash::HashKind::SHA1;
  355. break;
  356. case HashAlgorithm::SHA256:
  357. hash_kind = Crypto::Hash::HashKind::SHA256;
  358. break;
  359. case HashAlgorithm::SHA384:
  360. hash_kind = Crypto::Hash::HashKind::SHA384;
  361. break;
  362. case HashAlgorithm::SHA512:
  363. hash_kind = Crypto::Hash::HashKind::SHA512;
  364. break;
  365. default:
  366. dbgln("verify_rsa_server_key_exchange failed: Hash algorithm is not SHA1/256/384/512, instead {}", signature_hash);
  367. return (i8)Error::NotUnderstood;
  368. }
  369. auto pkcs1 = Crypto::PK::EMSA_PKCS1_V1_5<Crypto::Hash::Manager>(hash_kind);
  370. auto verification = pkcs1.verify(message, signature_verify_bytes, signature_length * 8);
  371. if (verification == Crypto::VerificationConsistency::Inconsistent) {
  372. dbgln("verify_rsa_server_key_exchange failed: Verification of signature inconsistent");
  373. return (i8)Error::NotSafe;
  374. }
  375. return 0;
  376. }
  377. ssize_t TLSv12::handle_ecdhe_ecdsa_server_key_exchange(ReadonlyBytes buffer)
  378. {
  379. u8 server_public_key_length;
  380. if (auto result = handle_ecdhe_server_key_exchange(buffer, server_public_key_length)) {
  381. return result;
  382. }
  383. auto server_key_info = buffer.slice(3, 4 + server_public_key_length);
  384. auto signature = buffer.slice(7 + server_public_key_length);
  385. return verify_ecdsa_server_key_exchange(server_key_info, signature);
  386. }
  387. ssize_t TLSv12::verify_ecdsa_server_key_exchange(ReadonlyBytes server_key_info_buffer, ReadonlyBytes signature_buffer)
  388. {
  389. auto signature_hash = signature_buffer[0];
  390. auto signature_algorithm = signature_buffer[1];
  391. if (signature_algorithm != (u8)SignatureAlgorithm::ECDSA) {
  392. dbgln("verify_ecdsa_server_key_exchange failed: Signature algorithm is not ECDSA, instead {}", signature_algorithm);
  393. return (i8)Error::NotUnderstood;
  394. }
  395. auto signature_length = AK::convert_between_host_and_network_endian(ByteReader::load16(signature_buffer.offset_pointer(2)));
  396. auto signature = signature_buffer.slice(4, signature_length);
  397. if (m_context.certificates.is_empty()) {
  398. dbgln("verify_ecdsa_server_key_exchange failed: Attempting to verify signature without certificates");
  399. return (i8)Error::NotSafe;
  400. }
  401. ReadonlyBytes server_point = m_context.certificates.first().public_key.raw_key;
  402. auto message_result = ByteBuffer::create_uninitialized(64 + server_key_info_buffer.size());
  403. if (message_result.is_error()) {
  404. dbgln("verify_ecdsa_server_key_exchange failed: Not enough memory");
  405. return (i8)Error::OutOfMemory;
  406. }
  407. auto message = message_result.release_value();
  408. message.overwrite(0, m_context.local_random, 32);
  409. message.overwrite(32, m_context.remote_random, 32);
  410. message.overwrite(64, server_key_info_buffer.data(), server_key_info_buffer.size());
  411. Crypto::Hash::HashKind hash_kind;
  412. switch ((HashAlgorithm)signature_hash) {
  413. case HashAlgorithm::SHA256:
  414. hash_kind = Crypto::Hash::HashKind::SHA256;
  415. break;
  416. case HashAlgorithm::SHA384:
  417. hash_kind = Crypto::Hash::HashKind::SHA384;
  418. break;
  419. case HashAlgorithm::SHA512:
  420. hash_kind = Crypto::Hash::HashKind::SHA512;
  421. break;
  422. default:
  423. dbgln("verify_ecdsa_server_key_exchange failed: Hash algorithm is not SHA256/384/512, instead {}", signature_hash);
  424. return (i8)Error::NotUnderstood;
  425. }
  426. ErrorOr<bool> res = AK::Error::from_errno(ENOTSUP);
  427. auto& public_key = m_context.certificates.first().public_key;
  428. switch (public_key.algorithm.ec_parameters) {
  429. case SupportedGroup::SECP256R1: {
  430. Crypto::Hash::Manager manager(hash_kind);
  431. manager.update(message);
  432. auto digest = manager.digest();
  433. Crypto::Curves::SECP256r1 curve;
  434. res = curve.verify(digest.bytes(), server_point, signature);
  435. break;
  436. }
  437. case SupportedGroup::SECP384R1: {
  438. Crypto::Hash::Manager manager(hash_kind);
  439. manager.update(message);
  440. auto digest = manager.digest();
  441. Crypto::Curves::SECP384r1 curve;
  442. res = curve.verify(digest.bytes(), server_point, signature);
  443. break;
  444. }
  445. default: {
  446. dbgln("verify_ecdsa_server_key_exchange failed: Server certificate public key algorithm is not supported: {}", to_underlying(public_key.algorithm.ec_parameters));
  447. break;
  448. }
  449. }
  450. if (res.is_error()) {
  451. dbgln("verify_ecdsa_server_key_exchange failed: {}", res.error());
  452. return (i8)Error::NotUnderstood;
  453. }
  454. bool verification_ok = res.release_value();
  455. if (!verification_ok) {
  456. dbgln("verify_ecdsa_server_key_exchange failed: Verification of signature failed");
  457. return (i8)Error::NotSafe;
  458. }
  459. return 0;
  460. }
  461. }