ModularFunctions.cpp 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. /*
  2. * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Debug.h>
  7. #include <LibCrypto/BigInt/Algorithms/UnsignedBigIntegerAlgorithms.h>
  8. #include <LibCrypto/NumberTheory/ModularFunctions.h>
  9. namespace Crypto::NumberTheory {
  10. UnsignedBigInteger Mod(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
  11. {
  12. UnsignedBigInteger result;
  13. result.set_to(a);
  14. result.set_to(result.divided_by(b).remainder);
  15. return result;
  16. }
  17. UnsignedBigInteger ModularInverse(UnsignedBigInteger const& a_, UnsignedBigInteger const& b)
  18. {
  19. if (b == 1)
  20. return { 1 };
  21. UnsignedBigInteger temp_1;
  22. UnsignedBigInteger temp_2;
  23. UnsignedBigInteger temp_3;
  24. UnsignedBigInteger temp_4;
  25. UnsignedBigInteger temp_minus;
  26. UnsignedBigInteger temp_quotient;
  27. UnsignedBigInteger temp_d;
  28. UnsignedBigInteger temp_u;
  29. UnsignedBigInteger temp_v;
  30. UnsignedBigInteger temp_x;
  31. UnsignedBigInteger result;
  32. UnsignedBigIntegerAlgorithms::modular_inverse_without_allocation(a_, b, temp_1, temp_2, temp_3, temp_4, temp_minus, temp_quotient, temp_d, temp_u, temp_v, temp_x, result);
  33. return result;
  34. }
  35. UnsignedBigInteger ModularPower(UnsignedBigInteger const& b, UnsignedBigInteger const& e, UnsignedBigInteger const& m)
  36. {
  37. if (m == 1)
  38. return 0;
  39. if (m.is_odd()) {
  40. UnsignedBigInteger temp_z0 { 0 };
  41. UnsignedBigInteger temp_rr { 0 };
  42. UnsignedBigInteger temp_one { 0 };
  43. UnsignedBigInteger temp_z { 0 };
  44. UnsignedBigInteger temp_zz { 0 };
  45. UnsignedBigInteger temp_x { 0 };
  46. UnsignedBigInteger temp_extra { 0 };
  47. UnsignedBigInteger result;
  48. UnsignedBigIntegerAlgorithms::montgomery_modular_power_with_minimal_allocations(b, e, m, temp_z0, temp_rr, temp_one, temp_z, temp_zz, temp_x, temp_extra, result);
  49. return result;
  50. }
  51. UnsignedBigInteger ep { e };
  52. UnsignedBigInteger base { b };
  53. UnsignedBigInteger result;
  54. UnsignedBigInteger temp_1;
  55. UnsignedBigInteger temp_2;
  56. UnsignedBigInteger temp_3;
  57. UnsignedBigInteger temp_4;
  58. UnsignedBigInteger temp_multiply;
  59. UnsignedBigInteger temp_quotient;
  60. UnsignedBigInteger temp_remainder;
  61. UnsignedBigIntegerAlgorithms::destructive_modular_power_without_allocation(ep, base, m, temp_1, temp_2, temp_3, temp_4, temp_multiply, temp_quotient, temp_remainder, result);
  62. return result;
  63. }
  64. UnsignedBigInteger GCD(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
  65. {
  66. UnsignedBigInteger temp_a { a };
  67. UnsignedBigInteger temp_b { b };
  68. UnsignedBigInteger temp_1;
  69. UnsignedBigInteger temp_2;
  70. UnsignedBigInteger temp_3;
  71. UnsignedBigInteger temp_4;
  72. UnsignedBigInteger temp_quotient;
  73. UnsignedBigInteger temp_remainder;
  74. UnsignedBigInteger output;
  75. UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);
  76. return output;
  77. }
  78. UnsignedBigInteger LCM(UnsignedBigInteger const& a, UnsignedBigInteger const& b)
  79. {
  80. UnsignedBigInteger temp_a { a };
  81. UnsignedBigInteger temp_b { b };
  82. UnsignedBigInteger temp_1;
  83. UnsignedBigInteger temp_2;
  84. UnsignedBigInteger temp_3;
  85. UnsignedBigInteger temp_4;
  86. UnsignedBigInteger temp_quotient;
  87. UnsignedBigInteger temp_remainder;
  88. UnsignedBigInteger gcd_output;
  89. UnsignedBigInteger output { 0 };
  90. UnsignedBigIntegerAlgorithms::destructive_GCD_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
  91. if (gcd_output == 0) {
  92. dbgln_if(NT_DEBUG, "GCD is zero");
  93. return output;
  94. }
  95. // output = (a / gcd_output) * b
  96. UnsignedBigIntegerAlgorithms::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
  97. UnsignedBigIntegerAlgorithms::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, output);
  98. dbgln_if(NT_DEBUG, "quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);
  99. return output;
  100. }
  101. static bool MR_primality_test(UnsignedBigInteger n, Vector<UnsignedBigInteger, 256> const& tests)
  102. {
  103. // Written using Wikipedia:
  104. // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
  105. VERIFY(!(n < 4));
  106. auto predecessor = n.minus({ 1 });
  107. auto d = predecessor;
  108. size_t r = 0;
  109. {
  110. auto div_result = d.divided_by(2);
  111. while (div_result.remainder == 0) {
  112. d = div_result.quotient;
  113. div_result = d.divided_by(2);
  114. ++r;
  115. }
  116. }
  117. if (r == 0) {
  118. // n - 1 is odd, so n was even. But there is only one even prime:
  119. return n == 2;
  120. }
  121. for (auto& a : tests) {
  122. // Technically: VERIFY(2 <= a && a <= n - 2)
  123. VERIFY(a < n);
  124. auto x = ModularPower(a, d, n);
  125. if (x == 1 || x == predecessor)
  126. continue;
  127. bool skip_this_witness = false;
  128. // r − 1 iterations.
  129. for (size_t i = 0; i < r - 1; ++i) {
  130. x = ModularPower(x, 2, n);
  131. if (x == predecessor) {
  132. skip_this_witness = true;
  133. break;
  134. }
  135. }
  136. if (skip_this_witness)
  137. continue;
  138. return false; // "composite"
  139. }
  140. return true; // "probably prime"
  141. }
  142. UnsignedBigInteger random_number(UnsignedBigInteger const& min, UnsignedBigInteger const& max_excluded)
  143. {
  144. VERIFY(min < max_excluded);
  145. auto range = max_excluded.minus(min);
  146. UnsignedBigInteger base;
  147. auto size = range.trimmed_length() * sizeof(u32) + 2;
  148. // "+2" is intentional (see below).
  149. auto buffer = ByteBuffer::create_uninitialized(size).release_value_but_fixme_should_propagate_errors(); // FIXME: Handle possible OOM situation.
  150. auto* buf = buffer.data();
  151. fill_with_random(buffer);
  152. UnsignedBigInteger random { buf, size };
  153. // At this point, `random` is a large number, in the range [0, 256^size).
  154. // To get down to the actual range, we could just compute random % range.
  155. // This introduces "modulo bias". However, since we added 2 to `size`,
  156. // we know that the generated range is at least 65536 times as large as the
  157. // required range! This means that the modulo bias is only 0.0015%, if all
  158. // inputs are chosen adversarially. Let's hope this is good enough.
  159. auto divmod = random.divided_by(range);
  160. // The proper way to fix this is to restart if `divmod.quotient` is maximal.
  161. return divmod.remainder.plus(min);
  162. }
  163. bool is_probably_prime(UnsignedBigInteger const& p)
  164. {
  165. // Is it a small number?
  166. if (p < 49) {
  167. u32 p_value = p.words()[0];
  168. // Is it a very small prime?
  169. if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
  170. return true;
  171. // Is it the multiple of a very small prime?
  172. if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
  173. return false;
  174. // Then it must be a prime, but not a very small prime, like 37.
  175. return true;
  176. }
  177. Vector<UnsignedBigInteger, 256> tests;
  178. // Make some good initial guesses that are guaranteed to find all primes < 2^64.
  179. tests.append(UnsignedBigInteger(2));
  180. tests.append(UnsignedBigInteger(3));
  181. tests.append(UnsignedBigInteger(5));
  182. tests.append(UnsignedBigInteger(7));
  183. tests.append(UnsignedBigInteger(11));
  184. tests.append(UnsignedBigInteger(13));
  185. UnsignedBigInteger seventeen { 17 };
  186. for (size_t i = tests.size(); i < 256; ++i) {
  187. tests.append(random_number(seventeen, p.minus(2)));
  188. }
  189. // Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
  190. // With 200 random numbers, this would mean an error of about 2^-400.
  191. // So we don't need to worry too much about the quality of the random numbers.
  192. return MR_primality_test(p, tests);
  193. }
  194. UnsignedBigInteger random_big_prime(size_t bits)
  195. {
  196. VERIFY(bits >= 33);
  197. UnsignedBigInteger min = "6074001000"_bigint.shift_left(bits - 33);
  198. UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
  199. for (;;) {
  200. auto p = random_number(min, max);
  201. if ((p.words()[0] & 1) == 0) {
  202. // An even number is definitely not a large prime.
  203. continue;
  204. }
  205. if (is_probably_prime(p))
  206. return p;
  207. }
  208. }
  209. }