123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689 |
- /*
- * Copyright (c) 2023, Michiel Visser <opensource@webmichiel.nl>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #pragma once
- #include <AK/ByteBuffer.h>
- #include <AK/Endian.h>
- #include <AK/MemoryStream.h>
- #include <AK/Random.h>
- #include <AK/StdLibExtras.h>
- #include <AK/StringView.h>
- #include <AK/UFixedBigInt.h>
- #include <AK/UFixedBigIntDivision.h>
- #include <LibCrypto/ASN1/DER.h>
- #include <LibCrypto/Curves/EllipticCurve.h>
- namespace Crypto::Curves {
- struct SECPxxxr1CurveParameters {
- StringView prime;
- StringView a;
- StringView b;
- StringView order;
- StringView generator_point;
- };
- template<size_t bit_size, SECPxxxr1CurveParameters const& CURVE_PARAMETERS>
- class SECPxxxr1 : public EllipticCurve {
- private:
- using StorageType = AK::UFixedBigInt<bit_size>;
- using StorageTypeX2 = AK::UFixedBigInt<bit_size * 2>;
- struct JacobianPoint {
- StorageType x;
- StorageType y;
- StorageType z;
- };
- // Curve parameters
- static constexpr size_t KEY_BIT_SIZE = bit_size;
- static constexpr size_t KEY_BYTE_SIZE = KEY_BIT_SIZE / 8;
- static constexpr size_t POINT_BYTE_SIZE = 1 + 2 * KEY_BYTE_SIZE;
- static constexpr StorageType make_unsigned_fixed_big_int_from_string(StringView str)
- {
- StorageType result { 0 };
- for (auto c : str) {
- if (c == '_')
- continue;
- result <<= 4;
- result |= parse_ascii_hex_digit(c);
- }
- return result;
- }
- static constexpr StorageType PRIME = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.prime);
- static constexpr StorageType A = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.a);
- static constexpr StorageType B = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.b);
- static constexpr StorageType ORDER = make_unsigned_fixed_big_int_from_string(CURVE_PARAMETERS.order);
- static constexpr Array<u8, POINT_BYTE_SIZE> make_generator_point_bytes(StringView generator_point)
- {
- Array<u8, POINT_BYTE_SIZE> buf_array { 0 };
- auto it = generator_point.begin();
- for (size_t i = 0; i < POINT_BYTE_SIZE; i++) {
- if (it == CURVE_PARAMETERS.generator_point.end())
- break;
- while (*it == '_') {
- it++;
- }
- buf_array[i] = parse_ascii_hex_digit(*it) * 16;
- it++;
- if (it == CURVE_PARAMETERS.generator_point.end())
- break;
- buf_array[i] += parse_ascii_hex_digit(*it);
- it++;
- }
- return buf_array;
- }
- static constexpr Array<u8, POINT_BYTE_SIZE> GENERATOR_POINT = make_generator_point_bytes(CURVE_PARAMETERS.generator_point);
- // Check that the generator point starts with 0x04
- static_assert(GENERATOR_POINT[0] == 0x04);
- static constexpr StorageType calculate_modular_inverse_mod_r(StorageType value)
- {
- // Calculate the modular multiplicative inverse of value mod 2^bit_size using the extended euclidean algorithm
- using StorageTypeP1 = AK::UFixedBigInt<bit_size + 1>;
- StorageTypeP1 old_r = value;
- StorageTypeP1 r = static_cast<StorageTypeP1>(1u) << KEY_BIT_SIZE;
- StorageTypeP1 old_s = 1u;
- StorageTypeP1 s = 0u;
- while (!r.is_zero_constant_time()) {
- StorageTypeP1 r_save = r;
- StorageTypeP1 quotient = old_r.div_mod(r, r);
- old_r = r_save;
- StorageTypeP1 s_save = s;
- s = old_s - quotient * s;
- old_s = s_save;
- }
- return static_cast<StorageType>(old_s);
- }
- static constexpr StorageType calculate_r2_mod(StorageType modulus)
- {
- // Calculate the value of R^2 mod modulus, where R = 2^bit_size
- using StorageTypeX2P1 = AK::UFixedBigInt<bit_size * 2 + 1>;
- StorageTypeX2P1 r2 = static_cast<StorageTypeX2P1>(1u) << (2 * KEY_BIT_SIZE);
- return r2 % modulus;
- }
- // Verify that A = -3 mod p, which is required for some optimizations
- static_assert(A == PRIME - 3);
- // Precomputed helper values for reduction and Montgomery multiplication
- static constexpr StorageType REDUCE_PRIME = StorageType { 0 } - PRIME;
- static constexpr StorageType REDUCE_ORDER = StorageType { 0 } - ORDER;
- static constexpr StorageType PRIME_INVERSE_MOD_R = StorageType { 0 } - calculate_modular_inverse_mod_r(PRIME);
- static constexpr StorageType ORDER_INVERSE_MOD_R = StorageType { 0 } - calculate_modular_inverse_mod_r(ORDER);
- static constexpr StorageType R2_MOD_PRIME = calculate_r2_mod(PRIME);
- static constexpr StorageType R2_MOD_ORDER = calculate_r2_mod(ORDER);
- public:
- size_t key_size() override { return POINT_BYTE_SIZE; }
- ErrorOr<ByteBuffer> generate_private_key() override
- {
- auto buffer = TRY(ByteBuffer::create_uninitialized(KEY_BYTE_SIZE));
- fill_with_random(buffer);
- return buffer;
- }
- ErrorOr<ByteBuffer> generate_public_key(ReadonlyBytes a) override
- {
- return compute_coordinate(a, GENERATOR_POINT);
- }
- ErrorOr<ByteBuffer> compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes) override
- {
- AK::FixedMemoryStream scalar_stream { scalar_bytes };
- AK::FixedMemoryStream point_stream { point_bytes };
- StorageType scalar = TRY(scalar_stream.read_value<BigEndian<StorageType>>());
- JacobianPoint point = TRY(read_uncompressed_point(point_stream));
- JacobianPoint result = TRY(compute_coordinate_internal(scalar, point));
- // Export the values into an output buffer
- auto buf = TRY(ByteBuffer::create_uninitialized(POINT_BYTE_SIZE));
- AK::FixedMemoryStream buf_stream { buf.bytes() };
- TRY(buf_stream.write_value<u8>(0x04));
- TRY(buf_stream.write_value<BigEndian<StorageType>>(result.x));
- TRY(buf_stream.write_value<BigEndian<StorageType>>(result.y));
- return buf;
- }
- ErrorOr<ByteBuffer> derive_premaster_key(ReadonlyBytes shared_point) override
- {
- VERIFY(shared_point.size() == POINT_BYTE_SIZE);
- VERIFY(shared_point[0] == 0x04);
- ByteBuffer premaster_key = TRY(ByteBuffer::create_uninitialized(KEY_BYTE_SIZE));
- premaster_key.overwrite(0, shared_point.data() + 1, KEY_BYTE_SIZE);
- return premaster_key;
- }
- ErrorOr<bool> verify(ReadonlyBytes hash, ReadonlyBytes pubkey, ReadonlyBytes signature)
- {
- Crypto::ASN1::Decoder asn1_decoder(signature);
- TRY(asn1_decoder.enter());
- auto r_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
- auto s_bigint = TRY(asn1_decoder.read<Crypto::UnsignedBigInteger>(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Integer));
- StorageType r = 0u;
- StorageType s = 0u;
- for (size_t i = 0; i < (KEY_BIT_SIZE / 32); i++) {
- StorageType rr = r_bigint.words()[i];
- StorageType ss = s_bigint.words()[i];
- r |= (rr << (i * 32));
- s |= (ss << (i * 32));
- }
- // z is the hash
- StorageType z = 0u;
- for (uint8_t byte : hash) {
- z <<= 8;
- z |= byte;
- }
- AK::FixedMemoryStream pubkey_stream { pubkey };
- JacobianPoint pubkey_point = TRY(read_uncompressed_point(pubkey_stream));
- StorageType r_mo = to_montgomery_order(r);
- StorageType s_mo = to_montgomery_order(s);
- StorageType z_mo = to_montgomery_order(z);
- StorageType s_inv = modular_inverse_order(s_mo);
- StorageType u1 = modular_multiply_order(z_mo, s_inv);
- StorageType u2 = modular_multiply_order(r_mo, s_inv);
- u1 = from_montgomery_order(u1);
- u2 = from_montgomery_order(u2);
- JacobianPoint point1 = TRY(generate_public_key_internal(u1));
- JacobianPoint point2 = TRY(compute_coordinate_internal(u2, pubkey_point));
- // Convert the input point into Montgomery form
- point1.x = to_montgomery(point1.x);
- point1.y = to_montgomery(point1.y);
- point1.z = to_montgomery(point1.z);
- VERIFY(is_point_on_curve(point1));
- // Convert the input point into Montgomery form
- point2.x = to_montgomery(point2.x);
- point2.y = to_montgomery(point2.y);
- point2.z = to_montgomery(point2.z);
- VERIFY(is_point_on_curve(point2));
- JacobianPoint result = point_add(point1, point2);
- // Convert from Jacobian coordinates back to Affine coordinates
- convert_jacobian_to_affine(result);
- // Make sure the resulting point is on the curve
- VERIFY(is_point_on_curve(result));
- // Convert the result back from Montgomery form
- result.x = from_montgomery(result.x);
- result.y = from_montgomery(result.y);
- // Final modular reduction on the coordinates
- result.x = modular_reduce(result.x);
- result.y = modular_reduce(result.y);
- return r.is_equal_to_constant_time(result.x);
- }
- private:
- ErrorOr<JacobianPoint> generate_public_key_internal(StorageType a)
- {
- AK::FixedMemoryStream generator_point_stream { GENERATOR_POINT };
- JacobianPoint point = TRY(read_uncompressed_point(generator_point_stream));
- return compute_coordinate_internal(a, point);
- }
- ErrorOr<JacobianPoint> compute_coordinate_internal(StorageType scalar, JacobianPoint point)
- {
- // FIXME: This will slightly bias the distribution of client secrets
- scalar = modular_reduce_order(scalar);
- if (scalar.is_zero_constant_time())
- return Error::from_string_literal("SECPxxxr1: scalar is zero");
- // Convert the input point into Montgomery form
- point.x = to_montgomery(point.x);
- point.y = to_montgomery(point.y);
- point.z = to_montgomery(point.z);
- // Check that the point is on the curve
- if (!is_point_on_curve(point))
- return Error::from_string_literal("SECPxxxr1: point is not on the curve");
- JacobianPoint result { 0, 0, 0 };
- JacobianPoint temp_result { 0, 0, 0 };
- // Calculate the scalar times point multiplication in constant time
- for (size_t i = 0; i < KEY_BIT_SIZE; i++) {
- temp_result = point_add(result, point);
- auto condition = (scalar & 1u) == 1u;
- result.x = select(result.x, temp_result.x, condition);
- result.y = select(result.y, temp_result.y, condition);
- result.z = select(result.z, temp_result.z, condition);
- point = point_double(point);
- scalar >>= 1u;
- }
- // Convert from Jacobian coordinates back to Affine coordinates
- convert_jacobian_to_affine(result);
- // Make sure the resulting point is on the curve
- VERIFY(is_point_on_curve(result));
- // Convert the result back from Montgomery form
- result.x = from_montgomery(result.x);
- result.y = from_montgomery(result.y);
- result.z = from_montgomery(result.z);
- // Final modular reduction on the coordinates
- result.x = modular_reduce(result.x);
- result.y = modular_reduce(result.y);
- result.z = modular_reduce(result.z);
- return result;
- }
- static ErrorOr<JacobianPoint> read_uncompressed_point(Stream& stream)
- {
- // Make sure the point is uncompressed
- if (TRY(stream.read_value<u8>()) != 0x04)
- return Error::from_string_literal("SECPxxxr1: point is not uncompressed format");
- JacobianPoint point {
- TRY(stream.read_value<BigEndian<StorageType>>()),
- TRY(stream.read_value<BigEndian<StorageType>>()),
- 1u,
- };
- return point;
- }
- constexpr StorageType select(StorageType const& left, StorageType const& right, bool condition)
- {
- // If condition = 0 return left else right
- StorageType mask = static_cast<StorageType>(condition) - 1;
- AK::taint_for_optimizer(mask);
- return (left & mask) | (right & ~mask);
- }
- constexpr StorageType modular_reduce(StorageType const& value)
- {
- // Add -prime % 2^KEY_BIT_SIZE
- bool carry = false;
- StorageType other = value.addc(REDUCE_PRIME, carry);
- // Check for overflow
- return select(value, other, carry);
- }
- constexpr StorageType modular_reduce_order(StorageType const& value)
- {
- // Add -order % 2^KEY_BIT_SIZE
- bool carry = false;
- StorageType other = value.addc(REDUCE_ORDER, carry);
- // Check for overflow
- return select(value, other, carry);
- }
- constexpr StorageType modular_add(StorageType const& left, StorageType const& right, bool carry_in = false)
- {
- bool carry = carry_in;
- StorageType output = left.addc(right, carry);
- // If there is a carry, subtract p by adding 2^KEY_BIT_SIZE - p
- StorageType addend = select(0u, REDUCE_PRIME, carry);
- carry = false;
- output = output.addc(addend, carry);
- // If there is still a carry, subtract p by adding 2^KEY_BIT_SIZE - p
- addend = select(0u, REDUCE_PRIME, carry);
- return output + addend;
- }
- constexpr StorageType modular_sub(StorageType const& left, StorageType const& right)
- {
- bool borrow = false;
- StorageType output = left.subc(right, borrow);
- // If there is a borrow, add p by subtracting 2^KEY_BIT_SIZE - p
- StorageType sub = select(0u, REDUCE_PRIME, borrow);
- borrow = false;
- output = output.subc(sub, borrow);
- // If there is still a borrow, add p by subtracting 2^KEY_BIT_SIZE - p
- sub = select(0u, REDUCE_PRIME, borrow);
- return output - sub;
- }
- constexpr StorageType modular_multiply(StorageType const& left, StorageType const& right)
- {
- // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
- // This requires that the inputs to this function are in Montgomery form.
- // T = left * right
- StorageTypeX2 mult = left.wide_multiply(right);
- StorageType mult_mod_r = static_cast<StorageType>(mult);
- // m = ((T mod R) * curve_p')
- StorageType m = mult_mod_r * PRIME_INVERSE_MOD_R;
- // mp = (m mod R) * curve_p
- StorageTypeX2 mp = m.wide_multiply(PRIME);
- // t = (T + mp)
- bool carry = false;
- mult_mod_r.addc(static_cast<StorageType>(mp), carry);
- // output = t / R
- StorageType mult_high = static_cast<StorageType>(mult >> KEY_BIT_SIZE);
- StorageType mp_high = static_cast<StorageType>(mp >> KEY_BIT_SIZE);
- return modular_add(mult_high, mp_high, carry);
- }
- constexpr StorageType modular_square(StorageType const& value)
- {
- return modular_multiply(value, value);
- }
- constexpr StorageType to_montgomery(StorageType const& value)
- {
- return modular_multiply(value, R2_MOD_PRIME);
- }
- constexpr StorageType from_montgomery(StorageType const& value)
- {
- return modular_multiply(value, 1u);
- }
- constexpr StorageType modular_inverse(StorageType const& value)
- {
- // Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
- // Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
- StorageType base = value;
- StorageType result = to_montgomery(1u);
- StorageType prime_minus_2 = PRIME - 2u;
- for (size_t i = 0; i < KEY_BIT_SIZE; i++) {
- if ((prime_minus_2 & 1u) == 1u) {
- result = modular_multiply(result, base);
- }
- base = modular_square(base);
- prime_minus_2 >>= 1u;
- }
- return result;
- }
- constexpr StorageType modular_add_order(StorageType const& left, StorageType const& right, bool carry_in = false)
- {
- bool carry = carry_in;
- StorageType output = left.addc(right, carry);
- // If there is a carry, subtract n by adding 2^KEY_BIT_SIZE - n
- StorageType addend = select(0u, REDUCE_ORDER, carry);
- carry = false;
- output = output.addc(addend, carry);
- // If there is still a carry, subtract n by adding 2^KEY_BIT_SIZE - n
- addend = select(0u, REDUCE_ORDER, carry);
- return output + addend;
- }
- constexpr StorageType modular_multiply_order(StorageType const& left, StorageType const& right)
- {
- // Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
- // This requires that the inputs to this function are in Montgomery form.
- // T = left * right
- StorageTypeX2 mult = left.wide_multiply(right);
- StorageType mult_mod_r = static_cast<StorageType>(mult);
- // m = ((T mod R) * curve_n')
- StorageType m = mult_mod_r * ORDER_INVERSE_MOD_R;
- // mp = (m mod R) * curve_n
- StorageTypeX2 mp = m.wide_multiply(ORDER);
- // t = (T + mp)
- bool carry = false;
- mult_mod_r.addc(static_cast<StorageType>(mp), carry);
- // output = t / R
- StorageType mult_high = static_cast<StorageType>(mult >> KEY_BIT_SIZE);
- StorageType mp_high = static_cast<StorageType>(mp >> KEY_BIT_SIZE);
- return modular_add_order(mult_high, mp_high, carry);
- }
- constexpr StorageType modular_square_order(StorageType const& value)
- {
- return modular_multiply_order(value, value);
- }
- constexpr StorageType to_montgomery_order(StorageType const& value)
- {
- return modular_multiply_order(value, R2_MOD_ORDER);
- }
- constexpr StorageType from_montgomery_order(StorageType const& value)
- {
- return modular_multiply_order(value, 1u);
- }
- constexpr StorageType modular_inverse_order(StorageType const& value)
- {
- // Modular inverse modulo the curve order can be computed using Fermat's little theorem: a^(n-2) mod n = a^-1 mod n.
- // Calculating a^(n-2) mod n can be done using the square-and-multiply exponentiation method, as n-2 is constant.
- StorageType base = value;
- StorageType result = to_montgomery_order(1u);
- StorageType order_minus_2 = ORDER - 2u;
- for (size_t i = 0; i < KEY_BIT_SIZE; i++) {
- if ((order_minus_2 & 1u) == 1u) {
- result = modular_multiply_order(result, base);
- }
- base = modular_square_order(base);
- order_minus_2 >>= 1u;
- }
- return result;
- }
- JacobianPoint point_double(JacobianPoint const& point)
- {
- // Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
- // if (Y == 0)
- // return POINT_AT_INFINITY
- if (point.y.is_zero_constant_time()) {
- VERIFY_NOT_REACHED();
- }
- StorageType temp;
- // Y2 = Y^2
- StorageType y2 = modular_square(point.y);
- // S = 4*X*Y2
- StorageType s = modular_multiply(point.x, y2);
- s = modular_add(s, s);
- s = modular_add(s, s);
- // M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
- // This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
- // This simplification only works because a = -3 mod p
- temp = modular_square(point.z);
- StorageType m = modular_add(point.x, temp);
- temp = modular_sub(point.x, temp);
- m = modular_multiply(m, temp);
- temp = modular_add(m, m);
- m = modular_add(m, temp);
- // X' = M^2 - 2*S
- StorageType xp = modular_square(m);
- xp = modular_sub(xp, s);
- xp = modular_sub(xp, s);
- // Y' = M*(S - X') - 8*Y2^2
- StorageType yp = modular_sub(s, xp);
- yp = modular_multiply(yp, m);
- temp = modular_square(y2);
- temp = modular_add(temp, temp);
- temp = modular_add(temp, temp);
- temp = modular_add(temp, temp);
- yp = modular_sub(yp, temp);
- // Z' = 2*Y*Z
- StorageType zp = modular_multiply(point.y, point.z);
- zp = modular_add(zp, zp);
- // return (X', Y', Z')
- return JacobianPoint { xp, yp, zp };
- }
- JacobianPoint point_add(JacobianPoint const& point_a, JacobianPoint const& point_b)
- {
- // Based on "Point Addition" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
- if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
- return point_b;
- }
- StorageType temp;
- temp = modular_square(point_b.z);
- // U1 = X1*Z2^2
- StorageType u1 = modular_multiply(point_a.x, temp);
- // S1 = Y1*Z2^3
- StorageType s1 = modular_multiply(point_a.y, temp);
- s1 = modular_multiply(s1, point_b.z);
- temp = modular_square(point_a.z);
- // U2 = X2*Z1^2
- StorageType u2 = modular_multiply(point_b.x, temp);
- // S2 = Y2*Z1^3
- StorageType s2 = modular_multiply(point_b.y, temp);
- s2 = modular_multiply(s2, point_a.z);
- // if (U1 == U2)
- // if (S1 != S2)
- // return POINT_AT_INFINITY
- // else
- // return POINT_DOUBLE(X1, Y1, Z1)
- if (u1.is_equal_to_constant_time(u2)) {
- if (s1.is_equal_to_constant_time(s2)) {
- return point_double(point_a);
- } else {
- VERIFY_NOT_REACHED();
- }
- }
- // H = U2 - U1
- StorageType h = modular_sub(u2, u1);
- StorageType h2 = modular_square(h);
- StorageType h3 = modular_multiply(h2, h);
- // R = S2 - S1
- StorageType r = modular_sub(s2, s1);
- // X3 = R^2 - H^3 - 2*U1*H^2
- StorageType x3 = modular_square(r);
- x3 = modular_sub(x3, h3);
- temp = modular_multiply(u1, h2);
- temp = modular_add(temp, temp);
- x3 = modular_sub(x3, temp);
- // Y3 = R*(U1*H^2 - X3) - S1*H^3
- StorageType y3 = modular_multiply(u1, h2);
- y3 = modular_sub(y3, x3);
- y3 = modular_multiply(y3, r);
- temp = modular_multiply(s1, h3);
- y3 = modular_sub(y3, temp);
- // Z3 = H*Z1*Z2
- StorageType z3 = modular_multiply(h, point_a.z);
- z3 = modular_multiply(z3, point_b.z);
- // return (X3, Y3, Z3)
- return JacobianPoint { x3, y3, z3 };
- }
- void convert_jacobian_to_affine(JacobianPoint& point)
- {
- StorageType temp;
- // X' = X/Z^2
- temp = modular_square(point.z);
- temp = modular_inverse(temp);
- point.x = modular_multiply(point.x, temp);
- // Y' = Y/Z^3
- temp = modular_square(point.z);
- temp = modular_multiply(temp, point.z);
- temp = modular_inverse(temp);
- point.y = modular_multiply(point.y, temp);
- // Z' = 1
- point.z = to_montgomery(1u);
- }
- bool is_point_on_curve(JacobianPoint const& point)
- {
- // This check requires the point to be in Montgomery form, with Z=1
- StorageType temp, temp2;
- // Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
- temp = modular_square(point.y);
- temp2 = modular_square(point.x);
- temp2 = modular_multiply(temp2, point.x);
- temp = modular_sub(temp, temp2);
- temp = modular_add(temp, point.x);
- temp = modular_add(temp, point.x);
- temp = modular_add(temp, point.x);
- temp = modular_sub(temp, to_montgomery(B));
- temp = modular_reduce(temp);
- return temp.is_zero_constant_time() && point.z.is_equal_to_constant_time(to_montgomery(1u));
- }
- };
- // SECP256r1 curve
- static constexpr SECPxxxr1CurveParameters SECP256r1_CURVE_PARAMETERS {
- .prime = "FFFFFFFF_00000001_00000000_00000000_00000000_FFFFFFFF_FFFFFFFF_FFFFFFFF"sv,
- .a = "FFFFFFFF_00000001_00000000_00000000_00000000_FFFFFFFF_FFFFFFFF_FFFFFFFC"sv,
- .b = "5AC635D8_AA3A93E7_B3EBBD55_769886BC_651D06B0_CC53B0F6_3BCE3C3E_27D2604B"sv,
- .order = "FFFFFFFF_00000000_FFFFFFFF_FFFFFFFF_BCE6FAAD_A7179E84_F3B9CAC2_FC632551"sv,
- .generator_point = "04_6B17D1F2_E12C4247_F8BCE6E5_63A440F2_77037D81_2DEB33A0_F4A13945_D898C296_4FE342E2_FE1A7F9B_8EE7EB4A_7C0F9E16_2BCE3357_6B315ECE_CBB64068_37BF51F5"sv,
- };
- using SECP256r1 = SECPxxxr1<256, SECP256r1_CURVE_PARAMETERS>;
- // SECP384r1 curve
- static constexpr SECPxxxr1CurveParameters SECP384r1_CURVE_PARAMETERS {
- .prime = "FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_FFFFFFFF_00000000_00000000_FFFFFFFF"sv,
- .a = "FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_FFFFFFFF_00000000_00000000_FFFFFFFC"sv,
- .b = "B3312FA7_E23EE7E4_988E056B_E3F82D19_181D9C6E_FE814112_0314088F_5013875A_C656398D_8A2ED19D_2A85C8ED_D3EC2AEF"sv,
- .order = "FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_C7634D81_F4372DDF_581A0DB2_48B0A77A_ECEC196A_CCC52973"sv,
- .generator_point = "04_AA87CA22_BE8B0537_8EB1C71E_F320AD74_6E1D3B62_8BA79B98_59F741E0_82542A38_5502F25D_BF55296C_3A545E38_72760AB7_3617DE4A_96262C6F_5D9E98BF_9292DC29_F8F41DBD_289A147C_E9DA3113_B5F0B8C0_0A60B1CE_1D7E819D_7A431D7C_90EA0E5F"sv,
- };
- using SECP384r1 = SECPxxxr1<384, SECP384r1_CURVE_PARAMETERS>;
- }
|