Processor.cpp 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Format.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/String.h>
  9. #include <AK/Types.h>
  10. #include <Kernel/Interrupts/APIC.h>
  11. #include <Kernel/Process.h>
  12. #include <Kernel/Sections.h>
  13. #include <Kernel/StdLib.h>
  14. #include <Kernel/Thread.h>
  15. #include <Kernel/VM/ProcessPagingScope.h>
  16. #include <Kernel/Arch/x86/CPUID.h>
  17. #include <Kernel/Arch/x86/Interrupts.h>
  18. #include <Kernel/Arch/x86/MSR.h>
  19. #include <Kernel/Arch/x86/Processor.h>
  20. #include <Kernel/Arch/x86/ProcessorInfo.h>
  21. #include <Kernel/Arch/x86/SafeMem.h>
  22. #include <Kernel/Arch/x86/ScopedCritical.h>
  23. #include <Kernel/Arch/x86/TrapFrame.h>
  24. namespace Kernel {
  25. READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state;
  26. READONLY_AFTER_INIT static ProcessorContainer s_processors {};
  27. READONLY_AFTER_INIT Atomic<u32> Processor::g_total_processors;
  28. static volatile bool s_smp_enabled;
  29. static Atomic<ProcessorMessage*> s_message_pool;
  30. Atomic<u32> Processor::s_idle_cpu_mask { 0 };
  31. // The compiler can't see the calls to these functions inside assembly.
  32. // Declare them, to avoid dead code warnings.
  33. extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, TrapFrame* trap) __attribute__((used));
  34. extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) __attribute__((used));
  35. extern "C" FlatPtr do_init_context(Thread* thread, u32 flags) __attribute__((used));
  36. UNMAP_AFTER_INIT static void sse_init()
  37. {
  38. write_cr0((read_cr0() & 0xfffffffbu) | 0x2);
  39. write_cr4(read_cr4() | 0x600);
  40. }
  41. void exit_kernel_thread(void)
  42. {
  43. Thread::current()->exit();
  44. }
  45. UNMAP_AFTER_INIT void Processor::cpu_detect()
  46. {
  47. // NOTE: This is called during Processor::early_initialize, we cannot
  48. // safely log at this point because we don't have kmalloc
  49. // initialized yet!
  50. auto set_feature =
  51. [&](CPUFeature f) {
  52. m_features = static_cast<CPUFeature>(static_cast<u32>(m_features) | static_cast<u32>(f));
  53. };
  54. m_features = static_cast<CPUFeature>(0);
  55. CPUID processor_info(0x1);
  56. if (processor_info.edx() & (1 << 4))
  57. set_feature(CPUFeature::TSC);
  58. if (processor_info.edx() & (1 << 6))
  59. set_feature(CPUFeature::PAE);
  60. if (processor_info.edx() & (1 << 13))
  61. set_feature(CPUFeature::PGE);
  62. if (processor_info.edx() & (1 << 23))
  63. set_feature(CPUFeature::MMX);
  64. if (processor_info.edx() & (1 << 24))
  65. set_feature(CPUFeature::FXSR);
  66. if (processor_info.edx() & (1 << 25))
  67. set_feature(CPUFeature::SSE);
  68. if (processor_info.edx() & (1 << 26))
  69. set_feature(CPUFeature::SSE2);
  70. if (processor_info.ecx() & (1 << 0))
  71. set_feature(CPUFeature::SSE3);
  72. if (processor_info.ecx() & (1 << 9))
  73. set_feature(CPUFeature::SSSE3);
  74. if (processor_info.ecx() & (1 << 19))
  75. set_feature(CPUFeature::SSE4_1);
  76. if (processor_info.ecx() & (1 << 20))
  77. set_feature(CPUFeature::SSE4_2);
  78. if (processor_info.ecx() & (1 << 26))
  79. set_feature(CPUFeature::XSAVE);
  80. if (processor_info.ecx() & (1 << 28))
  81. set_feature(CPUFeature::AVX);
  82. if (processor_info.ecx() & (1 << 30))
  83. set_feature(CPUFeature::RDRAND);
  84. if (processor_info.ecx() & (1u << 31))
  85. set_feature(CPUFeature::HYPERVISOR);
  86. if (processor_info.edx() & (1 << 11)) {
  87. u32 stepping = processor_info.eax() & 0xf;
  88. u32 model = (processor_info.eax() >> 4) & 0xf;
  89. u32 family = (processor_info.eax() >> 8) & 0xf;
  90. if (!(family == 6 && model < 3 && stepping < 3))
  91. set_feature(CPUFeature::SEP);
  92. if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe))
  93. set_feature(CPUFeature::CONSTANT_TSC);
  94. }
  95. u32 max_extended_leaf = CPUID(0x80000000).eax();
  96. if (max_extended_leaf >= 0x80000001) {
  97. CPUID extended_processor_info(0x80000001);
  98. if (extended_processor_info.edx() & (1 << 20))
  99. set_feature(CPUFeature::NX);
  100. if (extended_processor_info.edx() & (1 << 27))
  101. set_feature(CPUFeature::RDTSCP);
  102. if (extended_processor_info.edx() & (1 << 29))
  103. set_feature(CPUFeature::LM);
  104. if (extended_processor_info.edx() & (1 << 11)) {
  105. // Only available in 64 bit mode
  106. set_feature(CPUFeature::SYSCALL);
  107. }
  108. }
  109. if (max_extended_leaf >= 0x80000007) {
  110. CPUID cpuid(0x80000007);
  111. if (cpuid.edx() & (1 << 8)) {
  112. set_feature(CPUFeature::CONSTANT_TSC);
  113. set_feature(CPUFeature::NONSTOP_TSC);
  114. }
  115. }
  116. if (max_extended_leaf >= 0x80000008) {
  117. // CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor.
  118. CPUID cpuid(0x80000008);
  119. m_physical_address_bit_width = cpuid.eax() & 0xff;
  120. } else {
  121. // For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.
  122. m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32;
  123. }
  124. CPUID extended_features(0x7);
  125. if (extended_features.ebx() & (1 << 20))
  126. set_feature(CPUFeature::SMAP);
  127. if (extended_features.ebx() & (1 << 7))
  128. set_feature(CPUFeature::SMEP);
  129. if (extended_features.ecx() & (1 << 2))
  130. set_feature(CPUFeature::UMIP);
  131. if (extended_features.ebx() & (1 << 18))
  132. set_feature(CPUFeature::RDSEED);
  133. }
  134. UNMAP_AFTER_INIT void Processor::cpu_setup()
  135. {
  136. // NOTE: This is called during Processor::early_initialize, we cannot
  137. // safely log at this point because we don't have kmalloc
  138. // initialized yet!
  139. cpu_detect();
  140. if (has_feature(CPUFeature::SSE)) {
  141. // enter_thread_context() assumes that if a x86 CPU supports SSE then it also supports FXSR.
  142. // SSE support without FXSR is an extremely unlikely scenario, so let's be pragmatic about it.
  143. VERIFY(has_feature(CPUFeature::FXSR));
  144. sse_init();
  145. }
  146. write_cr0(read_cr0() | 0x00010000);
  147. if (has_feature(CPUFeature::PGE)) {
  148. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  149. write_cr4(read_cr4() | 0x80);
  150. }
  151. if (has_feature(CPUFeature::NX)) {
  152. // Turn on IA32_EFER.NXE
  153. asm volatile(
  154. "movl $0xc0000080, %ecx\n"
  155. "rdmsr\n"
  156. "orl $0x800, %eax\n"
  157. "wrmsr\n");
  158. }
  159. if (has_feature(CPUFeature::SMEP)) {
  160. // Turn on CR4.SMEP
  161. write_cr4(read_cr4() | 0x100000);
  162. }
  163. if (has_feature(CPUFeature::SMAP)) {
  164. // Turn on CR4.SMAP
  165. write_cr4(read_cr4() | 0x200000);
  166. }
  167. if (has_feature(CPUFeature::UMIP)) {
  168. write_cr4(read_cr4() | 0x800);
  169. }
  170. if (has_feature(CPUFeature::TSC)) {
  171. write_cr4(read_cr4() | 0x4);
  172. }
  173. if (has_feature(CPUFeature::XSAVE)) {
  174. // Turn on CR4.OSXSAVE
  175. write_cr4(read_cr4() | 0x40000);
  176. // According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1."
  177. // Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves.
  178. write_xcr0(0x1);
  179. if (has_feature(CPUFeature::AVX)) {
  180. // Turn on SSE, AVX and x87 flags
  181. write_xcr0(read_xcr0() | 0x7);
  182. }
  183. }
  184. }
  185. String Processor::features_string() const
  186. {
  187. StringBuilder builder;
  188. auto feature_to_str =
  189. [](CPUFeature f) -> const char* {
  190. switch (f) {
  191. case CPUFeature::NX:
  192. return "nx";
  193. case CPUFeature::PAE:
  194. return "pae";
  195. case CPUFeature::PGE:
  196. return "pge";
  197. case CPUFeature::RDRAND:
  198. return "rdrand";
  199. case CPUFeature::RDSEED:
  200. return "rdseed";
  201. case CPUFeature::SMAP:
  202. return "smap";
  203. case CPUFeature::SMEP:
  204. return "smep";
  205. case CPUFeature::SSE:
  206. return "sse";
  207. case CPUFeature::TSC:
  208. return "tsc";
  209. case CPUFeature::RDTSCP:
  210. return "rdtscp";
  211. case CPUFeature::CONSTANT_TSC:
  212. return "constant_tsc";
  213. case CPUFeature::NONSTOP_TSC:
  214. return "nonstop_tsc";
  215. case CPUFeature::UMIP:
  216. return "umip";
  217. case CPUFeature::SEP:
  218. return "sep";
  219. case CPUFeature::SYSCALL:
  220. return "syscall";
  221. case CPUFeature::MMX:
  222. return "mmx";
  223. case CPUFeature::FXSR:
  224. return "fxsr";
  225. case CPUFeature::SSE2:
  226. return "sse2";
  227. case CPUFeature::SSE3:
  228. return "sse3";
  229. case CPUFeature::SSSE3:
  230. return "ssse3";
  231. case CPUFeature::SSE4_1:
  232. return "sse4.1";
  233. case CPUFeature::SSE4_2:
  234. return "sse4.2";
  235. case CPUFeature::XSAVE:
  236. return "xsave";
  237. case CPUFeature::AVX:
  238. return "avx";
  239. case CPUFeature::LM:
  240. return "lm";
  241. case CPUFeature::HYPERVISOR:
  242. return "hypervisor";
  243. // no default statement here intentionally so that we get
  244. // a warning if a new feature is forgotten to be added here
  245. }
  246. // Shouldn't ever happen
  247. return "???";
  248. };
  249. bool first = true;
  250. for (u32 flag = 1; flag != 0; flag <<= 1) {
  251. if ((static_cast<u32>(m_features) & flag) != 0) {
  252. if (first)
  253. first = false;
  254. else
  255. builder.append(' ');
  256. auto str = feature_to_str(static_cast<CPUFeature>(flag));
  257. builder.append(str, strlen(str));
  258. }
  259. }
  260. return builder.build();
  261. }
  262. UNMAP_AFTER_INIT void Processor::early_initialize(u32 cpu)
  263. {
  264. m_self = this;
  265. m_cpu = cpu;
  266. m_in_irq = 0;
  267. m_in_critical = 0;
  268. m_invoke_scheduler_async = false;
  269. m_scheduler_initialized = false;
  270. m_message_queue = nullptr;
  271. m_idle_thread = nullptr;
  272. m_current_thread = nullptr;
  273. m_info = nullptr;
  274. m_halt_requested = false;
  275. if (cpu == 0) {
  276. s_smp_enabled = false;
  277. g_total_processors.store(1u, AK::MemoryOrder::memory_order_release);
  278. } else {
  279. g_total_processors.fetch_add(1u, AK::MemoryOrder::memory_order_acq_rel);
  280. }
  281. deferred_call_pool_init();
  282. cpu_setup();
  283. gdt_init();
  284. VERIFY(is_initialized()); // sanity check
  285. VERIFY(&current() == this); // sanity check
  286. }
  287. UNMAP_AFTER_INIT void Processor::initialize(u32 cpu)
  288. {
  289. VERIFY(m_self == this);
  290. VERIFY(&current() == this); // sanity check
  291. dmesgln("CPU[{}]: Supported features: {}", id(), features_string());
  292. if (!has_feature(CPUFeature::RDRAND))
  293. dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", id());
  294. dmesgln("CPU[{}]: Physical address bit width: {}", id(), m_physical_address_bit_width);
  295. if (cpu == 0)
  296. idt_init();
  297. else
  298. flush_idt();
  299. if (cpu == 0) {
  300. VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0);
  301. asm volatile("fninit");
  302. if (has_feature(CPUFeature::FXSR))
  303. asm volatile("fxsave %0"
  304. : "=m"(s_clean_fpu_state));
  305. else
  306. asm volatile("fnsave %0"
  307. : "=m"(s_clean_fpu_state));
  308. if (has_feature(CPUFeature::HYPERVISOR))
  309. detect_hypervisor();
  310. }
  311. m_info = new ProcessorInfo(*this);
  312. {
  313. // We need to prevent races between APs starting up at the same time
  314. VERIFY(cpu < s_processors.size());
  315. s_processors[cpu] = this;
  316. }
  317. }
  318. UNMAP_AFTER_INIT void Processor::detect_hypervisor()
  319. {
  320. CPUID hypervisor_leaf_range(0x40000000);
  321. // Get signature of hypervisor.
  322. alignas(sizeof(u32)) char hypervisor_signature_buffer[13];
  323. *reinterpret_cast<u32*>(hypervisor_signature_buffer) = hypervisor_leaf_range.ebx();
  324. *reinterpret_cast<u32*>(hypervisor_signature_buffer + 4) = hypervisor_leaf_range.ecx();
  325. *reinterpret_cast<u32*>(hypervisor_signature_buffer + 8) = hypervisor_leaf_range.edx();
  326. hypervisor_signature_buffer[12] = '\0';
  327. StringView hypervisor_signature(hypervisor_signature_buffer);
  328. dmesgln("CPU[{}]: CPUID hypervisor signature '{}' ({:#x} {:#x} {:#x}), max leaf {:#x}", id(), hypervisor_signature, hypervisor_leaf_range.ebx(), hypervisor_leaf_range.ecx(), hypervisor_leaf_range.edx(), hypervisor_leaf_range.eax());
  329. if (hypervisor_signature == "Microsoft Hv"sv)
  330. detect_hypervisor_hyperv(hypervisor_leaf_range);
  331. }
  332. UNMAP_AFTER_INIT void Processor::detect_hypervisor_hyperv(CPUID const& hypervisor_leaf_range)
  333. {
  334. if (hypervisor_leaf_range.eax() < 0x40000001)
  335. return;
  336. CPUID hypervisor_interface(0x40000001);
  337. // Get signature of hypervisor interface.
  338. alignas(sizeof(u32)) char interface_signature_buffer[5];
  339. *reinterpret_cast<u32*>(interface_signature_buffer) = hypervisor_interface.eax();
  340. interface_signature_buffer[4] = '\0';
  341. StringView hyperv_interface_signature(interface_signature_buffer);
  342. dmesgln("CPU[{}]: Hyper-V interface signature '{}' ({:#x})", id(), hyperv_interface_signature, hypervisor_interface.eax());
  343. if (hypervisor_leaf_range.eax() < 0x40000001)
  344. return;
  345. CPUID hypervisor_sysid(0x40000002);
  346. dmesgln("CPU[{}]: Hyper-V system identity {}.{}, build number {}", id(), hypervisor_sysid.ebx() >> 16, hypervisor_sysid.ebx() & 0xFFFF, hypervisor_sysid.eax());
  347. if (hypervisor_leaf_range.eax() < 0x40000005 || hyperv_interface_signature != "Hv#1"sv)
  348. return;
  349. dmesgln("CPU[{}]: Hyper-V hypervisor detected", id());
  350. // TODO: Actually do something with Hyper-V.
  351. }
  352. void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high)
  353. {
  354. u16 i = (selector & 0xfffc) >> 3;
  355. u32 prev_gdt_length = m_gdt_length;
  356. if (i >= m_gdt_length) {
  357. m_gdt_length = i + 1;
  358. VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0]));
  359. m_gdtr.limit = (m_gdt_length + 1) * 8 - 1;
  360. }
  361. m_gdt[i].low = low;
  362. m_gdt[i].high = high;
  363. // clear selectors we may have skipped
  364. while (i < prev_gdt_length) {
  365. m_gdt[i].low = 0;
  366. m_gdt[i].high = 0;
  367. i++;
  368. }
  369. }
  370. void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor)
  371. {
  372. write_raw_gdt_entry(selector, descriptor.low, descriptor.high);
  373. }
  374. Descriptor& Processor::get_gdt_entry(u16 selector)
  375. {
  376. u16 i = (selector & 0xfffc) >> 3;
  377. return *(Descriptor*)(&m_gdt[i]);
  378. }
  379. void Processor::flush_gdt()
  380. {
  381. m_gdtr.address = m_gdt;
  382. m_gdtr.limit = (m_gdt_length * 8) - 1;
  383. asm volatile("lgdt %0" ::"m"(m_gdtr)
  384. : "memory");
  385. }
  386. const DescriptorTablePointer& Processor::get_gdtr()
  387. {
  388. return m_gdtr;
  389. }
  390. Vector<FlatPtr> Processor::capture_stack_trace(Thread& thread, size_t max_frames)
  391. {
  392. FlatPtr frame_ptr = 0, ip = 0;
  393. Vector<FlatPtr, 32> stack_trace;
  394. auto walk_stack = [&](FlatPtr stack_ptr) {
  395. static constexpr size_t max_stack_frames = 4096;
  396. stack_trace.append(ip);
  397. size_t count = 1;
  398. while (stack_ptr && stack_trace.size() < max_stack_frames) {
  399. FlatPtr retaddr;
  400. count++;
  401. if (max_frames != 0 && count > max_frames)
  402. break;
  403. if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
  404. if (!copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]) || !retaddr)
  405. break;
  406. stack_trace.append(retaddr);
  407. if (!copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr))
  408. break;
  409. } else {
  410. void* fault_at;
  411. if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr)
  412. break;
  413. stack_trace.append(retaddr);
  414. if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at))
  415. break;
  416. }
  417. }
  418. };
  419. auto capture_current_thread = [&]() {
  420. frame_ptr = (FlatPtr)__builtin_frame_address(0);
  421. ip = (FlatPtr)__builtin_return_address(0);
  422. walk_stack(frame_ptr);
  423. };
  424. // Since the thread may be running on another processor, there
  425. // is a chance a context switch may happen while we're trying
  426. // to get it. It also won't be entirely accurate and merely
  427. // reflect the status at the last context switch.
  428. ScopedSpinLock lock(g_scheduler_lock);
  429. if (&thread == Processor::current_thread()) {
  430. VERIFY(thread.state() == Thread::Running);
  431. // Leave the scheduler lock. If we trigger page faults we may
  432. // need to be preempted. Since this is our own thread it won't
  433. // cause any problems as the stack won't change below this frame.
  434. lock.unlock();
  435. capture_current_thread();
  436. } else if (thread.is_active()) {
  437. VERIFY(thread.cpu() != Processor::id());
  438. // If this is the case, the thread is currently running
  439. // on another processor. We can't trust the kernel stack as
  440. // it may be changing at any time. We need to probably send
  441. // an IPI to that processor, have it walk the stack and wait
  442. // until it returns the data back to us
  443. auto& proc = Processor::current();
  444. smp_unicast(
  445. thread.cpu(),
  446. [&]() {
  447. dbgln("CPU[{}] getting stack for cpu #{}", Processor::id(), proc.get_id());
  448. ProcessPagingScope paging_scope(thread.process());
  449. VERIFY(&Processor::current() != &proc);
  450. VERIFY(&thread == Processor::current_thread());
  451. // NOTE: Because the other processor is still holding the
  452. // scheduler lock while waiting for this callback to finish,
  453. // the current thread on the target processor cannot change
  454. // TODO: What to do about page faults here? We might deadlock
  455. // because the other processor is still holding the
  456. // scheduler lock...
  457. capture_current_thread();
  458. },
  459. false);
  460. } else {
  461. switch (thread.state()) {
  462. case Thread::Running:
  463. VERIFY_NOT_REACHED(); // should have been handled above
  464. case Thread::Runnable:
  465. case Thread::Stopped:
  466. case Thread::Blocked:
  467. case Thread::Dying:
  468. case Thread::Dead: {
  469. // We need to retrieve ebp from what was last pushed to the kernel
  470. // stack. Before switching out of that thread, it switch_context
  471. // pushed the callee-saved registers, and the last of them happens
  472. // to be ebp.
  473. ProcessPagingScope paging_scope(thread.process());
  474. auto& regs = thread.regs();
  475. FlatPtr* stack_top = reinterpret_cast<FlatPtr*>(regs.sp());
  476. if (is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) {
  477. if (!copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0]))
  478. frame_ptr = 0;
  479. } else {
  480. void* fault_at;
  481. if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at))
  482. frame_ptr = 0;
  483. }
  484. ip = regs.ip();
  485. // TODO: We need to leave the scheduler lock here, but we also
  486. // need to prevent the target thread from being run while
  487. // we walk the stack
  488. lock.unlock();
  489. walk_stack(frame_ptr);
  490. break;
  491. }
  492. default:
  493. dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string());
  494. break;
  495. }
  496. }
  497. return stack_trace;
  498. }
  499. ProcessorContainer& Processor::processors()
  500. {
  501. return s_processors;
  502. }
  503. Processor& Processor::by_id(u32 cpu)
  504. {
  505. // s_processors does not need to be protected by a lock of any kind.
  506. // It is populated early in the boot process, and the BSP is waiting
  507. // for all APs to finish, after which this array never gets modified
  508. // again, so it's safe to not protect access to it here
  509. auto& procs = processors();
  510. VERIFY(procs[cpu] != nullptr);
  511. VERIFY(procs.size() > cpu);
  512. return *procs[cpu];
  513. }
  514. void Processor::enter_trap(TrapFrame& trap, bool raise_irq)
  515. {
  516. VERIFY_INTERRUPTS_DISABLED();
  517. VERIFY(&Processor::current() == this);
  518. trap.prev_irq_level = m_in_irq;
  519. if (raise_irq)
  520. m_in_irq++;
  521. auto* current_thread = Processor::current_thread();
  522. if (current_thread) {
  523. auto& current_trap = current_thread->current_trap();
  524. trap.next_trap = current_trap;
  525. current_trap = &trap;
  526. // The cs register of this trap tells us where we will return back to
  527. auto new_previous_mode = ((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
  528. if (current_thread->set_previous_mode(new_previous_mode) && trap.prev_irq_level == 0) {
  529. current_thread->update_time_scheduled(Scheduler::current_time(), new_previous_mode == Thread::PreviousMode::KernelMode, false);
  530. }
  531. } else {
  532. trap.next_trap = nullptr;
  533. }
  534. }
  535. void Processor::exit_trap(TrapFrame& trap)
  536. {
  537. VERIFY_INTERRUPTS_DISABLED();
  538. VERIFY(&Processor::current() == this);
  539. VERIFY(m_in_irq >= trap.prev_irq_level);
  540. m_in_irq = trap.prev_irq_level;
  541. smp_process_pending_messages();
  542. auto* current_thread = Processor::current_thread();
  543. if (current_thread) {
  544. auto& current_trap = current_thread->current_trap();
  545. current_trap = trap.next_trap;
  546. Thread::PreviousMode new_previous_mode;
  547. if (current_trap) {
  548. VERIFY(current_trap->regs);
  549. // If we have another higher level trap then we probably returned
  550. // from an interrupt or irq handler. The cs register of the
  551. // new/higher level trap tells us what the mode prior to it was
  552. new_previous_mode = ((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
  553. } else {
  554. // If we don't have a higher level trap then we're back in user mode.
  555. // Which means that the previous mode prior to being back in user mode was kernel mode
  556. new_previous_mode = Thread::PreviousMode::KernelMode;
  557. }
  558. if (current_thread->set_previous_mode(new_previous_mode))
  559. current_thread->update_time_scheduled(Scheduler::current_time(), true, false);
  560. }
  561. if (!m_in_irq && !m_in_critical)
  562. check_invoke_scheduler();
  563. }
  564. void Processor::check_invoke_scheduler()
  565. {
  566. VERIFY(!m_in_irq);
  567. VERIFY(!m_in_critical);
  568. if (m_invoke_scheduler_async && m_scheduler_initialized) {
  569. m_invoke_scheduler_async = false;
  570. Scheduler::invoke_async();
  571. }
  572. }
  573. void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  574. {
  575. auto ptr = vaddr.as_ptr();
  576. while (page_count > 0) {
  577. // clang-format off
  578. asm volatile("invlpg %0"
  579. :
  580. : "m"(*ptr)
  581. : "memory");
  582. // clang-format on
  583. ptr += PAGE_SIZE;
  584. page_count--;
  585. }
  586. }
  587. void Processor::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
  588. {
  589. if (s_smp_enabled && (!is_user_address(vaddr) || Process::current()->thread_count() > 1))
  590. smp_broadcast_flush_tlb(page_directory, vaddr, page_count);
  591. else
  592. flush_tlb_local(vaddr, page_count);
  593. }
  594. void Processor::smp_return_to_pool(ProcessorMessage& msg)
  595. {
  596. ProcessorMessage* next = nullptr;
  597. do {
  598. msg.next = next;
  599. } while (s_message_pool.compare_exchange_strong(next, &msg, AK::MemoryOrder::memory_order_acq_rel));
  600. }
  601. ProcessorMessage& Processor::smp_get_from_pool()
  602. {
  603. ProcessorMessage* msg;
  604. // The assumption is that messages are never removed from the pool!
  605. for (;;) {
  606. msg = s_message_pool.load(AK::MemoryOrder::memory_order_consume);
  607. if (!msg) {
  608. if (!Processor::current().smp_process_pending_messages()) {
  609. // TODO: pause for a bit?
  610. }
  611. continue;
  612. }
  613. // If another processor were to use this message in the meanwhile,
  614. // "msg" is still valid (because it never gets freed). We'd detect
  615. // this because the expected value "msg" and pool would
  616. // no longer match, and the compare_exchange will fail. But accessing
  617. // "msg->next" is always safe here.
  618. if (s_message_pool.compare_exchange_strong(msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) {
  619. // We successfully "popped" this available message
  620. break;
  621. }
  622. }
  623. VERIFY(msg != nullptr);
  624. return *msg;
  625. }
  626. u32 Processor::smp_wake_n_idle_processors(u32 wake_count)
  627. {
  628. VERIFY(Processor::current().in_critical());
  629. VERIFY(wake_count > 0);
  630. if (!s_smp_enabled)
  631. return 0;
  632. // Wake at most N - 1 processors
  633. if (wake_count >= Processor::count()) {
  634. wake_count = Processor::count() - 1;
  635. VERIFY(wake_count > 0);
  636. }
  637. u32 current_id = Processor::current().id();
  638. u32 did_wake_count = 0;
  639. auto& apic = APIC::the();
  640. while (did_wake_count < wake_count) {
  641. // Try to get a set of idle CPUs and flip them to busy
  642. u32 idle_mask = s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id);
  643. u32 idle_count = __builtin_popcountl(idle_mask);
  644. if (idle_count == 0)
  645. break; // No (more) idle processor available
  646. u32 found_mask = 0;
  647. for (u32 i = 0; i < idle_count; i++) {
  648. u32 cpu = __builtin_ffsl(idle_mask) - 1;
  649. idle_mask &= ~(1u << cpu);
  650. found_mask |= 1u << cpu;
  651. }
  652. idle_mask = s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask;
  653. if (idle_mask == 0)
  654. continue; // All of them were flipped to busy, try again
  655. idle_count = __builtin_popcountl(idle_mask);
  656. for (u32 i = 0; i < idle_count; i++) {
  657. u32 cpu = __builtin_ffsl(idle_mask) - 1;
  658. idle_mask &= ~(1u << cpu);
  659. // Send an IPI to that CPU to wake it up. There is a possibility
  660. // someone else woke it up as well, or that it woke up due to
  661. // a timer interrupt. But we tried hard to avoid this...
  662. apic.send_ipi(cpu);
  663. did_wake_count++;
  664. }
  665. }
  666. return did_wake_count;
  667. }
  668. UNMAP_AFTER_INIT void Processor::smp_enable()
  669. {
  670. size_t msg_pool_size = Processor::count() * 100u;
  671. size_t msg_entries_cnt = Processor::count();
  672. auto msgs = new ProcessorMessage[msg_pool_size];
  673. auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt];
  674. size_t msg_entry_i = 0;
  675. for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) {
  676. auto& msg = msgs[i];
  677. msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr;
  678. msg.per_proc_entries = &msg_entries[msg_entry_i];
  679. for (size_t k = 0; k < msg_entries_cnt; k++)
  680. msg_entries[msg_entry_i + k].msg = &msg;
  681. }
  682. s_message_pool.store(&msgs[0], AK::MemoryOrder::memory_order_release);
  683. // Start sending IPI messages
  684. s_smp_enabled = true;
  685. }
  686. void Processor::smp_cleanup_message(ProcessorMessage& msg)
  687. {
  688. switch (msg.type) {
  689. case ProcessorMessage::Callback:
  690. msg.callback_value().~Function();
  691. break;
  692. default:
  693. break;
  694. }
  695. }
  696. bool Processor::smp_process_pending_messages()
  697. {
  698. bool did_process = false;
  699. u32 prev_flags;
  700. enter_critical(prev_flags);
  701. if (auto pending_msgs = m_message_queue.exchange(nullptr, AK::MemoryOrder::memory_order_acq_rel)) {
  702. // We pulled the stack of pending messages in LIFO order, so we need to reverse the list first
  703. auto reverse_list =
  704. [](ProcessorMessageEntry* list) -> ProcessorMessageEntry* {
  705. ProcessorMessageEntry* rev_list = nullptr;
  706. while (list) {
  707. auto next = list->next;
  708. list->next = rev_list;
  709. rev_list = list;
  710. list = next;
  711. }
  712. return rev_list;
  713. };
  714. pending_msgs = reverse_list(pending_msgs);
  715. // now process in the right order
  716. ProcessorMessageEntry* next_msg;
  717. for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) {
  718. next_msg = cur_msg->next;
  719. auto msg = cur_msg->msg;
  720. dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", id(), VirtualAddress(msg));
  721. switch (msg->type) {
  722. case ProcessorMessage::Callback:
  723. msg->invoke_callback();
  724. break;
  725. case ProcessorMessage::FlushTlb:
  726. if (is_user_address(VirtualAddress(msg->flush_tlb.ptr))) {
  727. // We assume that we don't cross into kernel land!
  728. VERIFY(is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE));
  729. if (read_cr3() != msg->flush_tlb.page_directory->cr3()) {
  730. // This processor isn't using this page directory right now, we can ignore this request
  731. dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr));
  732. break;
  733. }
  734. }
  735. flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count);
  736. break;
  737. }
  738. bool is_async = msg->async; // Need to cache this value *before* dropping the ref count!
  739. auto prev_refs = msg->refs.fetch_sub(1u, AK::MemoryOrder::memory_order_acq_rel);
  740. VERIFY(prev_refs != 0);
  741. if (prev_refs == 1) {
  742. // All processors handled this. If this is an async message,
  743. // we need to clean it up and return it to the pool
  744. if (is_async) {
  745. smp_cleanup_message(*msg);
  746. smp_return_to_pool(*msg);
  747. }
  748. }
  749. if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed))
  750. halt_this();
  751. }
  752. did_process = true;
  753. } else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) {
  754. halt_this();
  755. }
  756. leave_critical(prev_flags);
  757. return did_process;
  758. }
  759. bool Processor::smp_queue_message(ProcessorMessage& msg)
  760. {
  761. // Note that it's quite possible that the other processor may pop
  762. // the queue at any given time. We rely on the fact that the messages
  763. // are pooled and never get freed!
  764. auto& msg_entry = msg.per_proc_entries[id()];
  765. VERIFY(msg_entry.msg == &msg);
  766. ProcessorMessageEntry* next = nullptr;
  767. do {
  768. msg_entry.next = next;
  769. } while (m_message_queue.compare_exchange_strong(next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel));
  770. return next == nullptr;
  771. }
  772. void Processor::smp_broadcast_message(ProcessorMessage& msg)
  773. {
  774. auto& cur_proc = Processor::current();
  775. dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), count(), VirtualAddress(&cur_proc));
  776. msg.refs.store(count() - 1, AK::MemoryOrder::memory_order_release);
  777. VERIFY(msg.refs > 0);
  778. bool need_broadcast = false;
  779. for_each(
  780. [&](Processor& proc) {
  781. if (&proc != &cur_proc) {
  782. if (proc.smp_queue_message(msg))
  783. need_broadcast = true;
  784. }
  785. });
  786. // Now trigger an IPI on all other APs (unless all targets already had messages queued)
  787. if (need_broadcast)
  788. APIC::the().broadcast_ipi();
  789. }
  790. void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg)
  791. {
  792. auto& cur_proc = Processor::current();
  793. VERIFY(!msg.async);
  794. // If synchronous then we must cleanup and return the message back
  795. // to the pool. Otherwise, the last processor to complete it will return it
  796. while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
  797. // TODO: pause for a bit?
  798. // We need to process any messages that may have been sent to
  799. // us while we're waiting. This also checks if another processor
  800. // may have requested us to halt.
  801. cur_proc.smp_process_pending_messages();
  802. }
  803. smp_cleanup_message(msg);
  804. smp_return_to_pool(msg);
  805. }
  806. void Processor::smp_broadcast(Function<void()> callback, bool async)
  807. {
  808. auto& msg = smp_get_from_pool();
  809. msg.async = async;
  810. msg.type = ProcessorMessage::Callback;
  811. new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
  812. smp_broadcast_message(msg);
  813. if (!async)
  814. smp_broadcast_wait_sync(msg);
  815. }
  816. void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async)
  817. {
  818. auto& cur_proc = Processor::current();
  819. VERIFY(cpu != cur_proc.get_id());
  820. auto& target_proc = processors()[cpu];
  821. msg.async = async;
  822. dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} proc: {}", cur_proc.get_id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_proc));
  823. msg.refs.store(1u, AK::MemoryOrder::memory_order_release);
  824. if (target_proc->smp_queue_message(msg)) {
  825. APIC::the().send_ipi(cpu);
  826. }
  827. if (!async) {
  828. // If synchronous then we must cleanup and return the message back
  829. // to the pool. Otherwise, the last processor to complete it will return it
  830. while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
  831. // TODO: pause for a bit?
  832. // We need to process any messages that may have been sent to
  833. // us while we're waiting. This also checks if another processor
  834. // may have requested us to halt.
  835. cur_proc.smp_process_pending_messages();
  836. }
  837. smp_cleanup_message(msg);
  838. smp_return_to_pool(msg);
  839. }
  840. }
  841. void Processor::smp_unicast(u32 cpu, Function<void()> callback, bool async)
  842. {
  843. auto& msg = smp_get_from_pool();
  844. msg.type = ProcessorMessage::Callback;
  845. new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
  846. smp_unicast_message(cpu, msg, async);
  847. }
  848. void Processor::smp_broadcast_flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count)
  849. {
  850. auto& msg = smp_get_from_pool();
  851. msg.async = false;
  852. msg.type = ProcessorMessage::FlushTlb;
  853. msg.flush_tlb.page_directory = page_directory;
  854. msg.flush_tlb.ptr = vaddr.as_ptr();
  855. msg.flush_tlb.page_count = page_count;
  856. smp_broadcast_message(msg);
  857. // While the other processors handle this request, we'll flush ours
  858. flush_tlb_local(vaddr, page_count);
  859. // Now wait until everybody is done as well
  860. smp_broadcast_wait_sync(msg);
  861. }
  862. void Processor::smp_broadcast_halt()
  863. {
  864. // We don't want to use a message, because this could have been triggered
  865. // by being out of memory and we might not be able to get a message
  866. for_each(
  867. [&](Processor& proc) {
  868. proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release);
  869. });
  870. // Now trigger an IPI on all other APs
  871. APIC::the().broadcast_ipi();
  872. }
  873. void Processor::Processor::halt()
  874. {
  875. if (s_smp_enabled)
  876. smp_broadcast_halt();
  877. halt_this();
  878. }
  879. UNMAP_AFTER_INIT void Processor::deferred_call_pool_init()
  880. {
  881. size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]);
  882. for (size_t i = 0; i < pool_count; i++) {
  883. auto& entry = m_deferred_call_pool[i];
  884. entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr;
  885. new (entry.handler_storage) DeferredCallEntry::HandlerFunction;
  886. entry.was_allocated = false;
  887. }
  888. m_pending_deferred_calls = nullptr;
  889. m_free_deferred_call_pool_entry = &m_deferred_call_pool[0];
  890. }
  891. void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry)
  892. {
  893. VERIFY(m_in_critical);
  894. VERIFY(!entry->was_allocated);
  895. entry->handler_value() = {};
  896. entry->next = m_free_deferred_call_pool_entry;
  897. m_free_deferred_call_pool_entry = entry;
  898. }
  899. DeferredCallEntry* Processor::deferred_call_get_free()
  900. {
  901. VERIFY(m_in_critical);
  902. if (m_free_deferred_call_pool_entry) {
  903. // Fast path, we have an entry in our pool
  904. auto* entry = m_free_deferred_call_pool_entry;
  905. m_free_deferred_call_pool_entry = entry->next;
  906. VERIFY(!entry->was_allocated);
  907. return entry;
  908. }
  909. auto* entry = new DeferredCallEntry;
  910. new (entry->handler_storage) DeferredCallEntry::HandlerFunction;
  911. entry->was_allocated = true;
  912. return entry;
  913. }
  914. void Processor::deferred_call_execute_pending()
  915. {
  916. VERIFY(m_in_critical);
  917. if (!m_pending_deferred_calls)
  918. return;
  919. auto* pending_list = m_pending_deferred_calls;
  920. m_pending_deferred_calls = nullptr;
  921. // We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first
  922. auto reverse_list =
  923. [](DeferredCallEntry* list) -> DeferredCallEntry* {
  924. DeferredCallEntry* rev_list = nullptr;
  925. while (list) {
  926. auto next = list->next;
  927. list->next = rev_list;
  928. rev_list = list;
  929. list = next;
  930. }
  931. return rev_list;
  932. };
  933. pending_list = reverse_list(pending_list);
  934. do {
  935. pending_list->invoke_handler();
  936. // Return the entry back to the pool, or free it
  937. auto* next = pending_list->next;
  938. if (pending_list->was_allocated) {
  939. pending_list->handler_value().~Function();
  940. delete pending_list;
  941. } else
  942. deferred_call_return_to_pool(pending_list);
  943. pending_list = next;
  944. } while (pending_list);
  945. }
  946. void Processor::deferred_call_queue_entry(DeferredCallEntry* entry)
  947. {
  948. VERIFY(m_in_critical);
  949. entry->next = m_pending_deferred_calls;
  950. m_pending_deferred_calls = entry;
  951. }
  952. void Processor::deferred_call_queue(Function<void()> callback)
  953. {
  954. // NOTE: If we are called outside of a critical section and outside
  955. // of an irq handler, the function will be executed before we return!
  956. ScopedCritical critical;
  957. auto& cur_proc = Processor::current();
  958. auto* entry = cur_proc.deferred_call_get_free();
  959. entry->handler_value() = move(callback);
  960. cur_proc.deferred_call_queue_entry(entry);
  961. }
  962. UNMAP_AFTER_INIT void Processor::gdt_init()
  963. {
  964. m_gdt_length = 0;
  965. m_gdtr.address = nullptr;
  966. m_gdtr.limit = 0;
  967. write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000);
  968. #if ARCH(I386)
  969. write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0
  970. write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0
  971. write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3
  972. write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3
  973. #else
  974. write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00af9a00); // code0
  975. write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00affa00); // code3
  976. write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x008ff200); // data3
  977. #endif
  978. #if ARCH(I386)
  979. Descriptor tls_descriptor {};
  980. tls_descriptor.low = tls_descriptor.high = 0;
  981. tls_descriptor.dpl = 3;
  982. tls_descriptor.segment_present = 1;
  983. tls_descriptor.granularity = 0;
  984. tls_descriptor.operation_size64 = 0;
  985. tls_descriptor.operation_size32 = 1;
  986. tls_descriptor.descriptor_type = 1;
  987. tls_descriptor.type = 2;
  988. write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3
  989. Descriptor gs_descriptor {};
  990. gs_descriptor.set_base(VirtualAddress { this });
  991. gs_descriptor.set_limit(sizeof(Processor) - 1);
  992. gs_descriptor.dpl = 0;
  993. gs_descriptor.segment_present = 1;
  994. gs_descriptor.granularity = 0;
  995. gs_descriptor.operation_size64 = 0;
  996. gs_descriptor.operation_size32 = 1;
  997. gs_descriptor.descriptor_type = 1;
  998. gs_descriptor.type = 2;
  999. write_gdt_entry(GDT_SELECTOR_PROC, gs_descriptor); // gs0
  1000. #endif
  1001. Descriptor tss_descriptor {};
  1002. tss_descriptor.set_base(VirtualAddress { (size_t)&m_tss & 0xffffffff });
  1003. tss_descriptor.set_limit(sizeof(TSS) - 1);
  1004. tss_descriptor.dpl = 0;
  1005. tss_descriptor.segment_present = 1;
  1006. tss_descriptor.granularity = 0;
  1007. tss_descriptor.operation_size64 = 0;
  1008. tss_descriptor.operation_size32 = 1;
  1009. tss_descriptor.descriptor_type = 0;
  1010. tss_descriptor.type = 9;
  1011. write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss
  1012. #if ARCH(X86_64)
  1013. Descriptor tss_descriptor_part2 {};
  1014. tss_descriptor_part2.low = (size_t)&m_tss >> 32;
  1015. write_gdt_entry(GDT_SELECTOR_TSS_PART2, tss_descriptor_part2);
  1016. #endif
  1017. flush_gdt();
  1018. load_task_register(GDT_SELECTOR_TSS);
  1019. #if ARCH(X86_64)
  1020. MSR gs_base(MSR_GS_BASE);
  1021. gs_base.set((u64)this);
  1022. #else
  1023. asm volatile(
  1024. "mov %%ax, %%ds\n"
  1025. "mov %%ax, %%es\n"
  1026. "mov %%ax, %%fs\n"
  1027. "mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0)
  1028. : "memory");
  1029. set_gs(GDT_SELECTOR_PROC);
  1030. #endif
  1031. #if ARCH(I386)
  1032. // Make sure CS points to the kernel code descriptor.
  1033. // clang-format off
  1034. asm volatile(
  1035. "ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n"
  1036. "sanity:\n");
  1037. // clang-format on
  1038. #endif
  1039. }
  1040. extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread, [[maybe_unused]] TrapFrame* trap)
  1041. {
  1042. VERIFY(!are_interrupts_enabled());
  1043. VERIFY(is_kernel_mode());
  1044. dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
  1045. VERIFY(to_thread == Thread::current());
  1046. Scheduler::enter_current(*from_thread, true);
  1047. // Since we got here and don't have Scheduler::context_switch in the
  1048. // call stack (because this is the first time we switched into this
  1049. // context), we need to notify the scheduler so that it can release
  1050. // the scheduler lock. We don't want to enable interrupts at this point
  1051. // as we're still in the middle of a context switch. Doing so could
  1052. // trigger a context switch within a context switch, leading to a crash.
  1053. FlatPtr flags = trap->regs->flags();
  1054. Scheduler::leave_on_first_switch(flags & ~0x200);
  1055. }
  1056. extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread)
  1057. {
  1058. VERIFY(from_thread == to_thread || from_thread->state() != Thread::Running);
  1059. VERIFY(to_thread->state() == Thread::Running);
  1060. bool has_fxsr = Processor::current().has_feature(CPUFeature::FXSR);
  1061. Processor::set_current_thread(*to_thread);
  1062. auto& from_regs = from_thread->regs();
  1063. auto& to_regs = to_thread->regs();
  1064. if (has_fxsr)
  1065. asm volatile("fxsave %0"
  1066. : "=m"(from_thread->fpu_state()));
  1067. else
  1068. asm volatile("fnsave %0"
  1069. : "=m"(from_thread->fpu_state()));
  1070. #if ARCH(I386)
  1071. from_regs.fs = get_fs();
  1072. from_regs.gs = get_gs();
  1073. set_fs(to_regs.fs);
  1074. set_gs(to_regs.gs);
  1075. #endif
  1076. if (from_thread->process().is_traced())
  1077. read_debug_registers_into(from_thread->debug_register_state());
  1078. if (to_thread->process().is_traced()) {
  1079. write_debug_registers_from(to_thread->debug_register_state());
  1080. } else {
  1081. clear_debug_registers();
  1082. }
  1083. auto& processor = Processor::current();
  1084. #if ARCH(I386)
  1085. auto& tls_descriptor = processor.get_gdt_entry(GDT_SELECTOR_TLS);
  1086. tls_descriptor.set_base(to_thread->thread_specific_data());
  1087. tls_descriptor.set_limit(to_thread->thread_specific_region_size());
  1088. #else
  1089. MSR fs_base_msr(MSR_FS_BASE);
  1090. fs_base_msr.set(to_thread->thread_specific_data().get());
  1091. #endif
  1092. if (from_regs.cr3 != to_regs.cr3)
  1093. write_cr3(to_regs.cr3);
  1094. to_thread->set_cpu(processor.get_id());
  1095. processor.restore_in_critical(to_thread->saved_critical());
  1096. if (has_fxsr)
  1097. asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state()));
  1098. else
  1099. asm volatile("frstor %0" ::"m"(to_thread->fpu_state()));
  1100. // TODO: ioperm?
  1101. }
  1102. extern "C" FlatPtr do_init_context(Thread* thread, u32 flags)
  1103. {
  1104. VERIFY_INTERRUPTS_DISABLED();
  1105. #if ARCH(I386)
  1106. thread->regs().eflags = flags;
  1107. #else
  1108. thread->regs().rflags = flags;
  1109. #endif
  1110. return Processor::current().init_context(*thread, true);
  1111. }
  1112. void Processor::assume_context(Thread& thread, FlatPtr flags)
  1113. {
  1114. dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread);
  1115. VERIFY_INTERRUPTS_DISABLED();
  1116. Scheduler::prepare_after_exec();
  1117. // in_critical() should be 2 here. The critical section in Process::exec
  1118. // and then the scheduler lock
  1119. VERIFY(Processor::current().in_critical() == 2);
  1120. do_assume_context(&thread, flags);
  1121. VERIFY_NOT_REACHED();
  1122. }
  1123. }