Bitmap.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. /*
  2. * Copyright (c) 2018-2024, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2022, Timothy Slater <tslater2006@gmail.com>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Bitmap.h>
  8. #include <AK/ByteString.h>
  9. #include <AK/Checked.h>
  10. #include <AK/LexicalPath.h>
  11. #include <AK/Memory.h>
  12. #include <AK/MemoryStream.h>
  13. #include <AK/Optional.h>
  14. #include <AK/Queue.h>
  15. #include <AK/ScopeGuard.h>
  16. #include <AK/Try.h>
  17. #include <LibCore/File.h>
  18. #include <LibCore/MappedFile.h>
  19. #include <LibCore/MimeData.h>
  20. #include <LibCore/System.h>
  21. #include <LibGfx/Bitmap.h>
  22. #include <LibGfx/ImageFormats/ImageDecoder.h>
  23. #include <LibGfx/ShareableBitmap.h>
  24. #include <errno.h>
  25. #include <stdio.h>
  26. namespace Gfx {
  27. struct BackingStore {
  28. void* data { nullptr };
  29. size_t pitch { 0 };
  30. size_t size_in_bytes { 0 };
  31. };
  32. size_t Bitmap::minimum_pitch(size_t physical_width, BitmapFormat format)
  33. {
  34. size_t element_size;
  35. switch (determine_storage_format(format)) {
  36. case StorageFormat::BGRx8888:
  37. case StorageFormat::BGRA8888:
  38. case StorageFormat::RGBA8888:
  39. element_size = 4;
  40. break;
  41. default:
  42. VERIFY_NOT_REACHED();
  43. }
  44. return physical_width * element_size;
  45. }
  46. static bool size_would_overflow(BitmapFormat format, IntSize size, int scale_factor)
  47. {
  48. if (size.width() < 0 || size.height() < 0)
  49. return true;
  50. // This check is a bit arbitrary, but should protect us from most shenanigans:
  51. if (size.width() >= INT16_MAX || size.height() >= INT16_MAX || scale_factor < 1 || scale_factor > 4)
  52. return true;
  53. // In contrast, this check is absolutely necessary:
  54. size_t pitch = Bitmap::minimum_pitch(size.width() * scale_factor, format);
  55. return Checked<size_t>::multiplication_would_overflow(pitch, size.height() * scale_factor);
  56. }
  57. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create(BitmapFormat format, IntSize size, int scale_factor)
  58. {
  59. auto backing_store = TRY(Bitmap::allocate_backing_store(format, size, scale_factor));
  60. return AK::adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, size, scale_factor, backing_store));
  61. }
  62. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_shareable(BitmapFormat format, IntSize size, int scale_factor)
  63. {
  64. if (size_would_overflow(format, size, scale_factor))
  65. return Error::from_string_literal("Gfx::Bitmap::create_shareable size overflow");
  66. auto const pitch = minimum_pitch(size.width() * scale_factor, format);
  67. auto const data_size = size_in_bytes(pitch, size.height() * scale_factor);
  68. auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(data_size, PAGE_SIZE)));
  69. auto bitmap = TRY(Bitmap::create_with_anonymous_buffer(format, buffer, size, scale_factor));
  70. return bitmap;
  71. }
  72. Bitmap::Bitmap(BitmapFormat format, IntSize size, int scale_factor, BackingStore const& backing_store)
  73. : m_size(size)
  74. , m_scale(scale_factor)
  75. , m_data(backing_store.data)
  76. , m_pitch(backing_store.pitch)
  77. , m_format(format)
  78. {
  79. VERIFY(!m_size.is_empty());
  80. VERIFY(!size_would_overflow(format, size, scale_factor));
  81. VERIFY(m_data);
  82. VERIFY(backing_store.size_in_bytes == size_in_bytes());
  83. m_data_is_malloced = true;
  84. }
  85. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_wrapper(BitmapFormat format, IntSize size, int scale_factor, size_t pitch, void* data)
  86. {
  87. if (size_would_overflow(format, size, scale_factor))
  88. return Error::from_string_literal("Gfx::Bitmap::create_wrapper size overflow");
  89. return adopt_ref(*new Bitmap(format, size, scale_factor, pitch, data));
  90. }
  91. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_file(StringView path, int scale_factor, Optional<IntSize> ideal_size)
  92. {
  93. if (scale_factor > 1 && path.starts_with("/res/"sv)) {
  94. auto load_scaled_bitmap = [](StringView path, int scale_factor, Optional<IntSize> ideal_size) -> ErrorOr<NonnullRefPtr<Bitmap>> {
  95. LexicalPath lexical_path { path };
  96. StringBuilder highdpi_icon_path;
  97. TRY(highdpi_icon_path.try_appendff("{}/{}-{}x.{}", lexical_path.dirname(), lexical_path.title(), scale_factor, lexical_path.extension()));
  98. auto highdpi_icon_string = highdpi_icon_path.string_view();
  99. auto file = TRY(Core::File::open(highdpi_icon_string, Core::File::OpenMode::Read));
  100. auto bitmap = TRY(load_from_file(move(file), highdpi_icon_string, ideal_size));
  101. if (bitmap->width() % scale_factor != 0 || bitmap->height() % scale_factor != 0)
  102. return Error::from_string_literal("Bitmap::load_from_file: HighDPI image size should be divisible by scale factor");
  103. bitmap->m_size.set_width(bitmap->width() / scale_factor);
  104. bitmap->m_size.set_height(bitmap->height() / scale_factor);
  105. bitmap->m_scale = scale_factor;
  106. return bitmap;
  107. };
  108. auto scaled_bitmap_or_error = load_scaled_bitmap(path, scale_factor, ideal_size);
  109. if (!scaled_bitmap_or_error.is_error())
  110. return scaled_bitmap_or_error.release_value();
  111. auto error = scaled_bitmap_or_error.release_error();
  112. if (!(error.is_syscall() && error.code() == ENOENT)) {
  113. dbgln("Couldn't load scaled bitmap: {}", error);
  114. dbgln("Trying base scale instead.");
  115. }
  116. }
  117. auto file = TRY(Core::File::open(path, Core::File::OpenMode::Read));
  118. return load_from_file(move(file), path, ideal_size);
  119. }
  120. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_file(NonnullOwnPtr<Core::File> file, StringView path, Optional<IntSize> ideal_size)
  121. {
  122. auto mapped_file = TRY(Core::MappedFile::map_from_file(move(file), path));
  123. auto mime_type = Core::guess_mime_type_based_on_filename(path);
  124. return load_from_bytes(mapped_file->bytes(), ideal_size, mime_type);
  125. }
  126. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::load_from_bytes(ReadonlyBytes bytes, Optional<IntSize> ideal_size, Optional<ByteString> mine_type)
  127. {
  128. if (auto decoder = TRY(ImageDecoder::try_create_for_raw_bytes(bytes, mine_type))) {
  129. auto frame = TRY(decoder->frame(0, ideal_size));
  130. if (auto& bitmap = frame.image)
  131. return bitmap.release_nonnull();
  132. }
  133. return Error::from_string_literal("Gfx::Bitmap unable to load from file");
  134. }
  135. Bitmap::Bitmap(BitmapFormat format, IntSize size, int scale_factor, size_t pitch, void* data)
  136. : m_size(size)
  137. , m_scale(scale_factor)
  138. , m_data(data)
  139. , m_pitch(pitch)
  140. , m_format(format)
  141. {
  142. VERIFY(pitch >= minimum_pitch(size.width() * scale_factor, format));
  143. VERIFY(!size_would_overflow(format, size, scale_factor));
  144. // FIXME: assert that `data` is actually long enough!
  145. }
  146. static bool check_size(IntSize size, int scale_factor, BitmapFormat format, unsigned actual_size)
  147. {
  148. // FIXME: Code duplication of size_in_bytes() and m_pitch
  149. unsigned expected_size_min = Bitmap::minimum_pitch(size.width() * scale_factor, format) * size.height() * scale_factor;
  150. unsigned expected_size_max = round_up_to_power_of_two(expected_size_min, PAGE_SIZE);
  151. if (expected_size_min > actual_size || actual_size > expected_size_max) {
  152. // Getting here is most likely an error.
  153. dbgln("Constructing a shared bitmap for format {} and size {} @ {}x, which demands {} bytes, which rounds up to at most {}.",
  154. static_cast<int>(format),
  155. size,
  156. scale_factor,
  157. expected_size_min,
  158. expected_size_max);
  159. dbgln("However, we were given {} bytes, which is outside this range?! Refusing cowardly.", actual_size);
  160. return false;
  161. }
  162. return true;
  163. }
  164. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_with_anonymous_buffer(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size, int scale_factor)
  165. {
  166. if (size_would_overflow(format, size, scale_factor))
  167. return Error::from_string_literal("Gfx::Bitmap::create_with_anonymous_buffer size overflow");
  168. return adopt_nonnull_ref_or_enomem(new (nothrow) Bitmap(format, move(buffer), size, scale_factor));
  169. }
  170. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_from_serialized_byte_buffer(ByteBuffer&& buffer)
  171. {
  172. return create_from_serialized_bytes(buffer.bytes());
  173. }
  174. /// Read a bitmap as described by:
  175. /// - actual size
  176. /// - width
  177. /// - height
  178. /// - scale_factor
  179. /// - format
  180. /// - image data (= actual size * u8)
  181. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::create_from_serialized_bytes(ReadonlyBytes bytes)
  182. {
  183. FixedMemoryStream stream { bytes };
  184. auto actual_size = TRY(stream.read_value<size_t>());
  185. auto width = TRY(stream.read_value<unsigned>());
  186. auto height = TRY(stream.read_value<unsigned>());
  187. auto scale_factor = TRY(stream.read_value<unsigned>());
  188. auto format = TRY(stream.read_value<BitmapFormat>());
  189. if (format > BitmapFormat::LastValid || format < BitmapFormat::FirstValid)
  190. return Error::from_string_literal("Gfx::Bitmap::create_from_serialized_byte_buffer: decode failed");
  191. if (!check_size({ width, height }, scale_factor, format, actual_size))
  192. return Error::from_string_literal("Gfx::Bitmap::create_from_serialized_byte_buffer: decode failed");
  193. if (TRY(stream.size()) - TRY(stream.tell()) < actual_size)
  194. return Error::from_string_literal("Gfx::Bitmap::create_from_serialized_byte_buffer: decode failed");
  195. auto data = bytes.slice(TRY(stream.tell()), actual_size);
  196. auto bitmap = TRY(Bitmap::create(format, { width, height }, scale_factor));
  197. data.copy_to({ bitmap->scanline(0), bitmap->size_in_bytes() });
  198. return bitmap;
  199. }
  200. ErrorOr<ByteBuffer> Bitmap::serialize_to_byte_buffer() const
  201. {
  202. auto buffer = TRY(ByteBuffer::create_uninitialized(sizeof(size_t) + 3 * sizeof(unsigned) + sizeof(BitmapFormat) + size_in_bytes()));
  203. FixedMemoryStream stream { buffer.span() };
  204. TRY(stream.write_value(size_in_bytes()));
  205. TRY(stream.write_value<unsigned>(size().width()));
  206. TRY(stream.write_value<unsigned>(size().height()));
  207. TRY(stream.write_value<unsigned>(scale()));
  208. TRY(stream.write_value(m_format));
  209. auto size = size_in_bytes();
  210. TRY(stream.write_until_depleted({ scanline(0), size }));
  211. VERIFY(TRY(stream.tell()) == TRY(stream.size()));
  212. return buffer;
  213. }
  214. Bitmap::Bitmap(BitmapFormat format, Core::AnonymousBuffer buffer, IntSize size, int scale_factor)
  215. : m_size(size)
  216. , m_scale(scale_factor)
  217. , m_data(buffer.data<void>())
  218. , m_pitch(minimum_pitch(size.width() * scale_factor, format))
  219. , m_format(format)
  220. , m_buffer(move(buffer))
  221. {
  222. VERIFY(!size_would_overflow(format, size, scale_factor));
  223. }
  224. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::clone() const
  225. {
  226. auto new_bitmap = TRY(Bitmap::create(format(), size(), scale()));
  227. VERIFY(size_in_bytes() == new_bitmap->size_in_bytes());
  228. memcpy(new_bitmap->scanline(0), scanline(0), size_in_bytes());
  229. return new_bitmap;
  230. }
  231. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::rotated(Gfx::RotationDirection rotation_direction) const
  232. {
  233. if (rotation_direction == Gfx::RotationDirection::Flip) {
  234. auto new_bitmap = TRY(Gfx::Bitmap::create(format(), { width(), height() }, scale()));
  235. auto w = this->physical_width();
  236. auto h = this->physical_height();
  237. for (int i = 0; i < w; i++) {
  238. for (int j = 0; j < h; j++)
  239. new_bitmap->set_pixel(w - i - 1, h - j - 1, this->get_pixel(i, j));
  240. }
  241. return new_bitmap;
  242. }
  243. auto new_bitmap = TRY(Gfx::Bitmap::create(this->format(), { height(), width() }, scale()));
  244. auto w = this->physical_width();
  245. auto h = this->physical_height();
  246. for (int i = 0; i < w; i++) {
  247. for (int j = 0; j < h; j++) {
  248. Color color;
  249. if (rotation_direction == Gfx::RotationDirection::CounterClockwise)
  250. color = this->get_pixel(w - i - 1, j);
  251. else
  252. color = this->get_pixel(i, h - j - 1);
  253. new_bitmap->set_pixel(j, i, color);
  254. }
  255. }
  256. return new_bitmap;
  257. }
  258. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::flipped(Gfx::Orientation orientation) const
  259. {
  260. auto new_bitmap = TRY(Gfx::Bitmap::create(this->format(), { width(), height() }, scale()));
  261. auto w = this->physical_width();
  262. auto h = this->physical_height();
  263. for (int i = 0; i < w; i++) {
  264. for (int j = 0; j < h; j++) {
  265. Color color = this->get_pixel(i, j);
  266. if (orientation == Orientation::Vertical)
  267. new_bitmap->set_pixel(i, h - j - 1, color);
  268. else
  269. new_bitmap->set_pixel(w - i - 1, j, color);
  270. }
  271. }
  272. return new_bitmap;
  273. }
  274. void Bitmap::apply_mask(Gfx::Bitmap const& mask, MaskKind mask_kind)
  275. {
  276. VERIFY(size() == mask.size());
  277. for (int y = 0; y < height(); y++) {
  278. for (int x = 0; x < width(); x++) {
  279. auto color = get_pixel(x, y);
  280. auto mask_color = mask.get_pixel(x, y);
  281. if (mask_kind == MaskKind::Luminance) {
  282. color = color.with_alpha(color.alpha() * mask_color.alpha() * mask_color.luminosity() / (255 * 255));
  283. } else {
  284. VERIFY(mask_kind == MaskKind::Alpha);
  285. color = color.with_alpha(color.alpha() * mask_color.alpha() / 255);
  286. }
  287. set_pixel(x, y, color);
  288. }
  289. }
  290. }
  291. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled(int sx, int sy) const
  292. {
  293. VERIFY(sx >= 0 && sy >= 0);
  294. if (sx == 1 && sy == 1)
  295. return clone();
  296. auto new_bitmap = TRY(Gfx::Bitmap::create(format(), { width() * sx, height() * sy }, scale()));
  297. auto old_width = physical_width();
  298. auto old_height = physical_height();
  299. for (int y = 0; y < old_height; y++) {
  300. for (int x = 0; x < old_width; x++) {
  301. auto color = get_pixel(x, y);
  302. auto base_x = x * sx;
  303. auto base_y = y * sy;
  304. for (int new_y = base_y; new_y < base_y + sy; new_y++) {
  305. for (int new_x = base_x; new_x < base_x + sx; new_x++) {
  306. new_bitmap->set_pixel(new_x, new_y, color);
  307. }
  308. }
  309. }
  310. }
  311. return new_bitmap;
  312. }
  313. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled(float sx, float sy) const
  314. {
  315. VERIFY(sx >= 0.0f && sy >= 0.0f);
  316. if (floorf(sx) == sx && floorf(sy) == sy)
  317. return scaled(static_cast<int>(sx), static_cast<int>(sy));
  318. int scaled_width = (int)ceilf(sx * (float)width());
  319. int scaled_height = (int)ceilf(sy * (float)height());
  320. return scaled_to_size({ scaled_width, scaled_height });
  321. }
  322. // http://fourier.eng.hmc.edu/e161/lectures/resize/node3.html
  323. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::scaled_to_size(Gfx::IntSize size) const
  324. {
  325. auto new_bitmap = TRY(Gfx::Bitmap::create(format(), size, scale()));
  326. auto old_width = physical_width();
  327. auto old_height = physical_height();
  328. auto new_width = new_bitmap->physical_width();
  329. auto new_height = new_bitmap->physical_height();
  330. if (old_width == 1 && old_height == 1) {
  331. new_bitmap->fill(get_pixel(0, 0));
  332. return new_bitmap;
  333. }
  334. if (old_width > 1 && old_height > 1) {
  335. // The interpolation goes out of bounds on the bottom- and right-most edges.
  336. // We handle those in two specialized loops not only to make them faster, but
  337. // also to avoid four branch checks for every pixel.
  338. for (int y = 0; y < new_height - 1; y++) {
  339. for (int x = 0; x < new_width - 1; x++) {
  340. auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
  341. auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
  342. int i = floorf(p);
  343. int j = floorf(q);
  344. float u = p - static_cast<float>(i);
  345. float v = q - static_cast<float>(j);
  346. auto a = get_pixel(i, j);
  347. auto b = get_pixel(i + 1, j);
  348. auto c = get_pixel(i, j + 1);
  349. auto d = get_pixel(i + 1, j + 1);
  350. auto e = a.mixed_with(b, u);
  351. auto f = c.mixed_with(d, u);
  352. auto color = e.mixed_with(f, v);
  353. new_bitmap->set_pixel(x, y, color);
  354. }
  355. }
  356. // Bottom strip (excluding last pixel)
  357. auto old_bottom_y = old_height - 1;
  358. auto new_bottom_y = new_height - 1;
  359. for (int x = 0; x < new_width - 1; x++) {
  360. auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
  361. int i = floorf(p);
  362. float u = p - static_cast<float>(i);
  363. auto a = get_pixel(i, old_bottom_y);
  364. auto b = get_pixel(i + 1, old_bottom_y);
  365. auto color = a.mixed_with(b, u);
  366. new_bitmap->set_pixel(x, new_bottom_y, color);
  367. }
  368. // Right strip (excluding last pixel)
  369. auto old_right_x = old_width - 1;
  370. auto new_right_x = new_width - 1;
  371. for (int y = 0; y < new_height - 1; y++) {
  372. auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
  373. int j = floorf(q);
  374. float v = q - static_cast<float>(j);
  375. auto c = get_pixel(old_right_x, j);
  376. auto d = get_pixel(old_right_x, j + 1);
  377. auto color = c.mixed_with(d, v);
  378. new_bitmap->set_pixel(new_right_x, y, color);
  379. }
  380. // Bottom-right pixel
  381. new_bitmap->set_pixel(new_width - 1, new_height - 1, get_pixel(physical_width() - 1, physical_height() - 1));
  382. return new_bitmap;
  383. } else if (old_height == 1) {
  384. // Copy horizontal strip multiple times (excluding last pixel to out of bounds).
  385. auto old_bottom_y = old_height - 1;
  386. for (int x = 0; x < new_width - 1; x++) {
  387. auto p = static_cast<float>(x) * static_cast<float>(old_width - 1) / static_cast<float>(new_width - 1);
  388. int i = floorf(p);
  389. float u = p - static_cast<float>(i);
  390. auto a = get_pixel(i, old_bottom_y);
  391. auto b = get_pixel(i + 1, old_bottom_y);
  392. auto color = a.mixed_with(b, u);
  393. for (int new_bottom_y = 0; new_bottom_y < new_height; new_bottom_y++) {
  394. // Interpolate color only once and then copy into all columns.
  395. new_bitmap->set_pixel(x, new_bottom_y, color);
  396. }
  397. }
  398. for (int new_bottom_y = 0; new_bottom_y < new_height; new_bottom_y++) {
  399. // Copy last pixel of horizontal strip
  400. new_bitmap->set_pixel(new_width - 1, new_bottom_y, get_pixel(physical_width() - 1, old_bottom_y));
  401. }
  402. return new_bitmap;
  403. } else if (old_width == 1) {
  404. // Copy vertical strip multiple times (excluding last pixel to avoid out of bounds).
  405. auto old_right_x = old_width - 1;
  406. for (int y = 0; y < new_height - 1; y++) {
  407. auto q = static_cast<float>(y) * static_cast<float>(old_height - 1) / static_cast<float>(new_height - 1);
  408. int j = floorf(q);
  409. float v = q - static_cast<float>(j);
  410. auto c = get_pixel(old_right_x, j);
  411. auto d = get_pixel(old_right_x, j + 1);
  412. auto color = c.mixed_with(d, v);
  413. for (int new_right_x = 0; new_right_x < new_width; new_right_x++) {
  414. // Interpolate color only once and copy into all rows.
  415. new_bitmap->set_pixel(new_right_x, y, color);
  416. }
  417. }
  418. for (int new_right_x = 0; new_right_x < new_width; new_right_x++) {
  419. // Copy last pixel of vertical strip
  420. new_bitmap->set_pixel(new_right_x, new_height - 1, get_pixel(old_right_x, physical_height() - 1));
  421. }
  422. }
  423. return new_bitmap;
  424. }
  425. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::cropped(Gfx::IntRect crop, Optional<BitmapFormat> new_bitmap_format) const
  426. {
  427. auto new_bitmap = TRY(Gfx::Bitmap::create(new_bitmap_format.value_or(format()), { crop.width(), crop.height() }, scale()));
  428. auto scaled_crop = crop * scale();
  429. for (int y = 0; y < scaled_crop.height(); ++y) {
  430. for (int x = 0; x < scaled_crop.width(); ++x) {
  431. int global_x = x + scaled_crop.left();
  432. int global_y = y + scaled_crop.top();
  433. if (global_x >= physical_width() || global_y >= physical_height() || global_x < 0 || global_y < 0) {
  434. new_bitmap->set_pixel(x, y, Gfx::Color::Black);
  435. } else {
  436. new_bitmap->set_pixel(x, y, get_pixel(global_x, global_y));
  437. }
  438. }
  439. }
  440. return new_bitmap;
  441. }
  442. ErrorOr<NonnullRefPtr<Bitmap>> Bitmap::to_bitmap_backed_by_anonymous_buffer() const
  443. {
  444. if (m_buffer.is_valid()) {
  445. // FIXME: The const_cast here is awkward.
  446. return NonnullRefPtr { const_cast<Bitmap&>(*this) };
  447. }
  448. auto buffer = TRY(Core::AnonymousBuffer::create_with_size(round_up_to_power_of_two(size_in_bytes(), PAGE_SIZE)));
  449. auto bitmap = TRY(Bitmap::create_with_anonymous_buffer(m_format, move(buffer), size(), scale()));
  450. memcpy(bitmap->scanline(0), scanline(0), size_in_bytes());
  451. return bitmap;
  452. }
  453. ErrorOr<NonnullRefPtr<Gfx::Bitmap>> Bitmap::inverted() const
  454. {
  455. auto inverted_bitmap = TRY(clone());
  456. for (auto y = 0; y < height(); y++) {
  457. for (auto x = 0; x < width(); x++)
  458. inverted_bitmap->set_pixel(x, y, get_pixel(x, y).inverted());
  459. }
  460. return inverted_bitmap;
  461. }
  462. Bitmap::~Bitmap()
  463. {
  464. if (m_data_is_malloced) {
  465. kfree_sized(m_data, size_in_bytes());
  466. }
  467. m_data = nullptr;
  468. }
  469. void Bitmap::strip_alpha_channel()
  470. {
  471. VERIFY(m_format == BitmapFormat::BGRA8888 || m_format == BitmapFormat::BGRx8888);
  472. for (ARGB32& pixel : *this)
  473. pixel = 0xff000000 | (pixel & 0xffffff);
  474. m_format = BitmapFormat::BGRx8888;
  475. }
  476. void Bitmap::fill(Color color)
  477. {
  478. for (int y = 0; y < physical_height(); ++y) {
  479. auto* scanline = this->scanline(y);
  480. fast_u32_fill(scanline, color.value(), physical_width());
  481. }
  482. }
  483. Gfx::ShareableBitmap Bitmap::to_shareable_bitmap() const
  484. {
  485. auto bitmap_or_error = to_bitmap_backed_by_anonymous_buffer();
  486. if (bitmap_or_error.is_error())
  487. return {};
  488. return Gfx::ShareableBitmap { bitmap_or_error.release_value_but_fixme_should_propagate_errors(), Gfx::ShareableBitmap::ConstructWithKnownGoodBitmap };
  489. }
  490. ErrorOr<BackingStore> Bitmap::allocate_backing_store(BitmapFormat format, IntSize size, int scale_factor)
  491. {
  492. if (size.is_empty())
  493. return Error::from_string_literal("Gfx::Bitmap backing store size is empty");
  494. if (size_would_overflow(format, size, scale_factor))
  495. return Error::from_string_literal("Gfx::Bitmap backing store size overflow");
  496. auto const pitch = minimum_pitch(size.width() * scale_factor, format);
  497. auto const data_size_in_bytes = size_in_bytes(pitch, size.height() * scale_factor);
  498. void* data = kcalloc(1, data_size_in_bytes);
  499. if (data == nullptr)
  500. return Error::from_errno(errno);
  501. return BackingStore { data, pitch, data_size_in_bytes };
  502. }
  503. bool Bitmap::visually_equals(Bitmap const& other) const
  504. {
  505. auto own_width = width();
  506. auto own_height = height();
  507. if (other.width() != own_width || other.height() != own_height)
  508. return false;
  509. for (auto y = 0; y < own_height; ++y) {
  510. for (auto x = 0; x < own_width; ++x) {
  511. if (get_pixel(x, y) != other.get_pixel(x, y))
  512. return false;
  513. }
  514. }
  515. return true;
  516. }
  517. Optional<Color> Bitmap::solid_color(u8 alpha_threshold) const
  518. {
  519. Optional<Color> color;
  520. for (auto y = 0; y < height(); ++y) {
  521. for (auto x = 0; x < width(); ++x) {
  522. auto const& pixel = get_pixel(x, y);
  523. if (has_alpha_channel() && pixel.alpha() <= alpha_threshold)
  524. continue;
  525. if (!color.has_value())
  526. color = pixel;
  527. else if (pixel != color)
  528. return {};
  529. }
  530. }
  531. return color;
  532. }
  533. void Bitmap::flood_visit_from_point(Gfx::IntPoint start_point, int threshold,
  534. Function<void(Gfx::IntPoint location)> pixel_reached)
  535. {
  536. VERIFY(rect().contains(start_point));
  537. auto target_color = get_pixel(start_point.x(), start_point.y());
  538. float threshold_normalized_squared = (threshold / 100.0f) * (threshold / 100.0f);
  539. Queue<Gfx::IntPoint> points_to_visit = Queue<Gfx::IntPoint>();
  540. points_to_visit.enqueue(start_point);
  541. pixel_reached(start_point);
  542. auto flood_mask = AK::Bitmap::create(width() * height(), false).release_value_but_fixme_should_propagate_errors();
  543. flood_mask.set(width() * start_point.y() + start_point.x(), true);
  544. // This implements a non-recursive flood fill. This is a breadth-first search of paintable neighbors
  545. // As we find neighbors that are reachable we call the location_reached callback, add them to the queue, and mark them in the mask
  546. while (!points_to_visit.is_empty()) {
  547. auto current_point = points_to_visit.dequeue();
  548. auto candidate_points = Array {
  549. current_point.moved_left(1),
  550. current_point.moved_right(1),
  551. current_point.moved_up(1),
  552. current_point.moved_down(1)
  553. };
  554. for (auto candidate_point : candidate_points) {
  555. auto flood_mask_index = width() * candidate_point.y() + candidate_point.x();
  556. if (!rect().contains(candidate_point))
  557. continue;
  558. auto pixel_color = get_pixel<Gfx::StorageFormat::BGRA8888>(candidate_point.x(), candidate_point.y());
  559. auto can_paint = pixel_color.distance_squared_to(target_color) <= threshold_normalized_squared;
  560. if (flood_mask.get(flood_mask_index) == false && can_paint) {
  561. points_to_visit.enqueue(candidate_point);
  562. pixel_reached(candidate_point);
  563. }
  564. flood_mask.set(flood_mask_index, true);
  565. }
  566. }
  567. }
  568. }