MemoryManager.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include "CMOS.h"
  27. #include "Process.h"
  28. #include <AK/Assertions.h>
  29. #include <AK/Memory.h>
  30. #include <AK/StringView.h>
  31. #include <Kernel/Arch/i386/CPU.h>
  32. #include <Kernel/FileSystem/Inode.h>
  33. #include <Kernel/Multiboot.h>
  34. #include <Kernel/VM/AnonymousVMObject.h>
  35. #include <Kernel/VM/ContiguousVMObject.h>
  36. #include <Kernel/VM/MemoryManager.h>
  37. #include <Kernel/VM/PageDirectory.h>
  38. #include <Kernel/VM/PhysicalRegion.h>
  39. #include <Kernel/VM/PurgeableVMObject.h>
  40. #include <Kernel/VM/SharedInodeVMObject.h>
  41. #include <LibBareMetal/StdLib.h>
  42. //#define MM_DEBUG
  43. //#define PAGE_FAULT_DEBUG
  44. extern FlatPtr start_of_kernel_text;
  45. extern FlatPtr start_of_kernel_data;
  46. extern FlatPtr end_of_kernel_bss;
  47. namespace Kernel {
  48. static MemoryManager* s_the;
  49. MemoryManager& MM
  50. {
  51. return *s_the;
  52. }
  53. MemoryManager::MemoryManager()
  54. {
  55. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  56. parse_memory_map();
  57. write_cr3(kernel_page_directory().cr3());
  58. setup_low_identity_mapping();
  59. setup_low_pseudo_identity_mapping();
  60. protect_kernel_image();
  61. m_shared_zero_page = allocate_user_physical_page();
  62. }
  63. MemoryManager::~MemoryManager()
  64. {
  65. }
  66. void MemoryManager::setup_low_pseudo_identity_mapping()
  67. {
  68. // This code switches the pseudo-identity mapping (8 first MB above 3G mark) from 2MB pages to 4KB pages.
  69. // The boot code sets it up as 2MB huge pages for convenience. But we need 4KB pages to be able to protect
  70. // the kernel soon!
  71. for (size_t i = 0; i < 4; ++i) {
  72. m_low_pseudo_identity_mapping_pages[i] = allocate_supervisor_physical_page();
  73. FlatPtr base = i * (2 * MB);
  74. auto* page_table = (PageTableEntry*)quickmap_page(*m_low_pseudo_identity_mapping_pages[i]);
  75. for (size_t j = 0; j < 512; ++j) {
  76. auto& pte = page_table[j];
  77. pte.set_physical_page_base(base + j * PAGE_SIZE);
  78. pte.set_writable(true);
  79. pte.set_present(true);
  80. pte.set_execute_disabled(false);
  81. pte.set_user_allowed(false);
  82. }
  83. unquickmap_page();
  84. }
  85. auto* pd = quickmap_pd(*m_kernel_page_directory, 3);
  86. for (size_t i = 0; i < 4; ++i) {
  87. pd[i].set_huge(false);
  88. pd[i].set_page_table_base(m_low_pseudo_identity_mapping_pages[i]->paddr().get());
  89. }
  90. flush_entire_tlb();
  91. }
  92. void MemoryManager::protect_kernel_image()
  93. {
  94. // Disable writing to the kernel text and rodata segments.
  95. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  96. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  97. pte.set_writable(false);
  98. }
  99. if (g_cpu_supports_nx) {
  100. // Disable execution of the kernel data and bss segments.
  101. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  102. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  103. pte.set_execute_disabled(true);
  104. }
  105. }
  106. }
  107. void MemoryManager::setup_low_identity_mapping()
  108. {
  109. m_low_page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  110. auto* pd_zero = quickmap_pd(kernel_page_directory(), 0);
  111. pd_zero[1].set_present(false);
  112. pd_zero[2].set_present(false);
  113. pd_zero[3].set_present(false);
  114. auto& pde_zero = pd_zero[0];
  115. pde_zero.set_page_table_base(m_low_page_table->paddr().get());
  116. pde_zero.set_present(true);
  117. pde_zero.set_huge(false);
  118. pde_zero.set_writable(true);
  119. pde_zero.set_user_allowed(false);
  120. if (g_cpu_supports_nx)
  121. pde_zero.set_execute_disabled(true);
  122. for (FlatPtr offset = (1 * MB); offset < (2 * MB); offset += PAGE_SIZE) {
  123. auto& page_table_page = m_low_page_table;
  124. auto& pte = quickmap_pt(page_table_page->paddr())[offset / PAGE_SIZE];
  125. pte.set_physical_page_base(offset);
  126. pte.set_user_allowed(false);
  127. pte.set_present(offset != 0);
  128. pte.set_writable(offset < (1 * MB));
  129. }
  130. }
  131. void MemoryManager::parse_memory_map()
  132. {
  133. RefPtr<PhysicalRegion> region;
  134. bool region_is_super = false;
  135. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  136. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  137. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  138. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  139. continue;
  140. // FIXME: Maybe make use of stuff below the 1MB mark?
  141. if (mmap->addr < (1 * MB))
  142. continue;
  143. if ((mmap->addr + mmap->len) > 0xffffffff)
  144. continue;
  145. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  146. if (diff != 0) {
  147. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  148. diff = PAGE_SIZE - diff;
  149. mmap->addr += diff;
  150. mmap->len -= diff;
  151. }
  152. if ((mmap->len % PAGE_SIZE) != 0) {
  153. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  154. mmap->len -= mmap->len % PAGE_SIZE;
  155. }
  156. if (mmap->len < PAGE_SIZE) {
  157. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  158. continue;
  159. }
  160. #ifdef MM_DEBUG
  161. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  162. #endif
  163. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  164. auto addr = PhysicalAddress(page_base);
  165. if (page_base < 7 * MB) {
  166. // nothing
  167. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  168. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  169. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  170. region = m_super_physical_regions.last();
  171. region_is_super = true;
  172. } else {
  173. region->expand(region->lower(), addr);
  174. }
  175. } else {
  176. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  177. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  178. region = m_user_physical_regions.last();
  179. region_is_super = false;
  180. } else {
  181. region->expand(region->lower(), addr);
  182. }
  183. }
  184. }
  185. }
  186. for (auto& region : m_super_physical_regions)
  187. m_super_physical_pages += region.finalize_capacity();
  188. for (auto& region : m_user_physical_regions)
  189. m_user_physical_pages += region.finalize_capacity();
  190. }
  191. const PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  192. {
  193. ASSERT_INTERRUPTS_DISABLED();
  194. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  195. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  196. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  197. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  198. const PageDirectoryEntry& pde = pd[page_directory_index];
  199. if (!pde.is_present())
  200. return nullptr;
  201. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  202. }
  203. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  204. {
  205. ASSERT_INTERRUPTS_DISABLED();
  206. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  207. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  208. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  209. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  210. PageDirectoryEntry& pde = pd[page_directory_index];
  211. if (!pde.is_present()) {
  212. #ifdef MM_DEBUG
  213. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  214. #endif
  215. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  216. #ifdef MM_DEBUG
  217. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  218. #endif
  219. pde.set_page_table_base(page_table->paddr().get());
  220. pde.set_user_allowed(true);
  221. pde.set_present(true);
  222. pde.set_writable(true);
  223. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  224. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  225. }
  226. return quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  227. }
  228. void MemoryManager::initialize()
  229. {
  230. s_the = new MemoryManager;
  231. }
  232. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  233. {
  234. if (vaddr.get() < 0xc0000000)
  235. return nullptr;
  236. for (auto& region : MM.m_kernel_regions) {
  237. if (region.contains(vaddr))
  238. return &region;
  239. }
  240. return nullptr;
  241. }
  242. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  243. {
  244. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  245. for (auto& region : process.m_regions) {
  246. if (region.contains(vaddr))
  247. return &region;
  248. }
  249. #ifdef MM_DEBUG
  250. dbg() << process << " Couldn't find user region for " << vaddr;
  251. #endif
  252. return nullptr;
  253. }
  254. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  255. {
  256. if (auto* region = kernel_region_from_vaddr(vaddr))
  257. return region;
  258. return user_region_from_vaddr(process, vaddr);
  259. }
  260. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  261. {
  262. if (auto* region = kernel_region_from_vaddr(vaddr))
  263. return region;
  264. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  265. }
  266. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  267. {
  268. if (auto* region = kernel_region_from_vaddr(vaddr))
  269. return region;
  270. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  271. if (!page_directory)
  272. return nullptr;
  273. ASSERT(page_directory->process());
  274. return user_region_from_vaddr(*page_directory->process(), vaddr);
  275. }
  276. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  277. {
  278. ASSERT_INTERRUPTS_DISABLED();
  279. ASSERT(Thread::current);
  280. if (g_in_irq) {
  281. dbg() << "BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr();
  282. dump_kernel_regions();
  283. }
  284. #ifdef PAGE_FAULT_DEBUG
  285. dbg() << "MM: handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
  286. #endif
  287. auto* region = region_from_vaddr(fault.vaddr());
  288. if (!region) {
  289. klog() << "NP(error) fault at invalid address " << fault.vaddr();
  290. return PageFaultResponse::ShouldCrash;
  291. }
  292. return region->handle_fault(fault);
  293. }
  294. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  295. {
  296. ASSERT(!(size % PAGE_SIZE));
  297. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  298. if (!range.is_valid())
  299. return nullptr;
  300. auto vmobject = ContiguousVMObject::create_with_size(size);
  301. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  302. if (!region)
  303. return nullptr;
  304. return region;
  305. }
  306. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  307. {
  308. ASSERT(!(size % PAGE_SIZE));
  309. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  310. if (!range.is_valid())
  311. return nullptr;
  312. auto vmobject = AnonymousVMObject::create_with_size(size);
  313. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  314. if (!region)
  315. return nullptr;
  316. if (should_commit)
  317. region->commit();
  318. return region;
  319. }
  320. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  321. {
  322. ASSERT(!(size % PAGE_SIZE));
  323. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  324. if (!range.is_valid())
  325. return nullptr;
  326. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  327. if (!vmobject)
  328. return nullptr;
  329. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  330. }
  331. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  332. {
  333. return allocate_kernel_region(size, name, access, true, true, cacheable);
  334. }
  335. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  336. {
  337. InterruptDisabler disabler;
  338. OwnPtr<Region> region;
  339. if (user_accessible)
  340. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  341. else
  342. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  343. if (region)
  344. region->map(kernel_page_directory());
  345. return region;
  346. }
  347. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  348. {
  349. ASSERT(!(size % PAGE_SIZE));
  350. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  351. if (!range.is_valid())
  352. return nullptr;
  353. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  354. }
  355. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  356. {
  357. for (auto& region : m_user_physical_regions) {
  358. if (!region.contains(page)) {
  359. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  360. continue;
  361. }
  362. region.return_page(move(page));
  363. --m_user_physical_pages_used;
  364. return;
  365. }
  366. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  367. ASSERT_NOT_REACHED();
  368. }
  369. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  370. {
  371. RefPtr<PhysicalPage> page;
  372. for (auto& region : m_user_physical_regions) {
  373. page = region.take_free_page(false);
  374. if (!page.is_null())
  375. break;
  376. }
  377. return page;
  378. }
  379. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  380. {
  381. InterruptDisabler disabler;
  382. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  383. if (!page) {
  384. if (m_user_physical_regions.is_empty()) {
  385. klog() << "MM: no user physical regions available (?)";
  386. }
  387. for_each_vmobject([&](auto& vmobject) {
  388. if (vmobject.is_purgeable()) {
  389. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  390. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  391. if (purged_page_count) {
  392. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &purgeable_vmobject << "}";
  393. page = find_free_user_physical_page();
  394. ASSERT(page);
  395. return IterationDecision::Break;
  396. }
  397. }
  398. return IterationDecision::Continue;
  399. });
  400. if (!page) {
  401. klog() << "MM: no user physical pages available";
  402. ASSERT_NOT_REACHED();
  403. return {};
  404. }
  405. }
  406. #ifdef MM_DEBUG
  407. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  408. #endif
  409. if (should_zero_fill == ShouldZeroFill::Yes) {
  410. auto* ptr = quickmap_page(*page);
  411. memset(ptr, 0, PAGE_SIZE);
  412. unquickmap_page();
  413. }
  414. ++m_user_physical_pages_used;
  415. return page;
  416. }
  417. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  418. {
  419. for (auto& region : m_super_physical_regions) {
  420. if (!region.contains(page)) {
  421. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  422. continue;
  423. }
  424. region.return_page(move(page));
  425. --m_super_physical_pages_used;
  426. return;
  427. }
  428. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  429. ASSERT_NOT_REACHED();
  430. }
  431. Vector<RefPtr<PhysicalPage>> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  432. {
  433. ASSERT(!(size % PAGE_SIZE));
  434. InterruptDisabler disabler;
  435. size_t count = ceil_div(size, PAGE_SIZE);
  436. Vector<RefPtr<PhysicalPage>> physical_pages;
  437. physical_pages.ensure_capacity(count);
  438. for (auto& region : m_super_physical_regions) {
  439. physical_pages = region.take_contiguous_free_pages((count), true);
  440. if (physical_pages.is_empty())
  441. continue;
  442. }
  443. if (physical_pages.is_empty()) {
  444. if (m_super_physical_regions.is_empty()) {
  445. klog() << "MM: no super physical regions available (?)";
  446. }
  447. klog() << "MM: no super physical pages available";
  448. ASSERT_NOT_REACHED();
  449. return {};
  450. }
  451. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0]->paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  452. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  453. m_super_physical_pages_used += count;
  454. return physical_pages;
  455. }
  456. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  457. {
  458. InterruptDisabler disabler;
  459. RefPtr<PhysicalPage> page;
  460. for (auto& region : m_super_physical_regions) {
  461. page = region.take_free_page(true);
  462. if (page.is_null())
  463. continue;
  464. }
  465. if (!page) {
  466. if (m_super_physical_regions.is_empty()) {
  467. klog() << "MM: no super physical regions available (?)";
  468. }
  469. klog() << "MM: no super physical pages available";
  470. ASSERT_NOT_REACHED();
  471. return {};
  472. }
  473. #ifdef MM_DEBUG
  474. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  475. #endif
  476. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  477. ++m_super_physical_pages_used;
  478. return page;
  479. }
  480. void MemoryManager::enter_process_paging_scope(Process& process)
  481. {
  482. ASSERT(Thread::current);
  483. InterruptDisabler disabler;
  484. Thread::current->tss().cr3 = process.page_directory().cr3();
  485. write_cr3(process.page_directory().cr3());
  486. }
  487. void MemoryManager::flush_entire_tlb()
  488. {
  489. write_cr3(read_cr3());
  490. }
  491. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  492. {
  493. #ifdef MM_DEBUG
  494. dbg() << "MM: Flush page " << vaddr;
  495. #endif
  496. asm volatile("invlpg %0"
  497. :
  498. : "m"(*(char*)vaddr.get())
  499. : "memory");
  500. }
  501. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  502. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  503. {
  504. auto& pte = boot_pd3_pde1023_pt[4];
  505. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  506. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  507. #ifdef MM_DEBUG
  508. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  509. #endif
  510. pte.set_physical_page_base(pd_paddr.get());
  511. pte.set_present(true);
  512. pte.set_writable(true);
  513. pte.set_user_allowed(false);
  514. flush_tlb(VirtualAddress(0xffe04000));
  515. }
  516. return (PageDirectoryEntry*)0xffe04000;
  517. }
  518. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  519. {
  520. auto& pte = boot_pd3_pde1023_pt[8];
  521. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  522. #ifdef MM_DEBUG
  523. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  524. #endif
  525. pte.set_physical_page_base(pt_paddr.get());
  526. pte.set_present(true);
  527. pte.set_writable(true);
  528. pte.set_user_allowed(false);
  529. flush_tlb(VirtualAddress(0xffe08000));
  530. }
  531. return (PageTableEntry*)0xffe08000;
  532. }
  533. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  534. {
  535. ASSERT_INTERRUPTS_DISABLED();
  536. ASSERT(!m_quickmap_in_use);
  537. m_quickmap_in_use = true;
  538. auto& pte = boot_pd3_pde1023_pt[0];
  539. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  540. #ifdef MM_DEBUG
  541. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  542. #endif
  543. pte.set_physical_page_base(physical_page.paddr().get());
  544. pte.set_present(true);
  545. pte.set_writable(true);
  546. pte.set_user_allowed(false);
  547. flush_tlb(VirtualAddress(0xffe00000));
  548. }
  549. return (u8*)0xffe00000;
  550. }
  551. void MemoryManager::unquickmap_page()
  552. {
  553. ASSERT_INTERRUPTS_DISABLED();
  554. ASSERT(m_quickmap_in_use);
  555. auto& pte = boot_pd3_pde1023_pt[0];
  556. pte.clear();
  557. flush_tlb(VirtualAddress(0xffe00000));
  558. m_quickmap_in_use = false;
  559. }
  560. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  561. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  562. {
  563. ASSERT(size);
  564. if (base_vaddr > base_vaddr.offset(size)) {
  565. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  566. return false;
  567. }
  568. VirtualAddress vaddr = base_vaddr.page_base();
  569. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  570. if (end_vaddr < vaddr) {
  571. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  572. return false;
  573. }
  574. const Region* region = nullptr;
  575. while (vaddr <= end_vaddr) {
  576. if (!region || !region->contains(vaddr)) {
  577. if (space == AccessSpace::Kernel)
  578. region = kernel_region_from_vaddr(vaddr);
  579. if (!region || !region->contains(vaddr))
  580. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  581. if (!region
  582. || (space == AccessSpace::User && !region->is_user_accessible())
  583. || (access_type == AccessType::Read && !region->is_readable())
  584. || (access_type == AccessType::Write && !region->is_writable())) {
  585. return false;
  586. }
  587. }
  588. vaddr = vaddr.offset(PAGE_SIZE);
  589. }
  590. return true;
  591. }
  592. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  593. {
  594. if (!is_user_address(vaddr))
  595. return false;
  596. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  597. return region && region->is_user_accessible() && region->is_stack();
  598. }
  599. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  600. {
  601. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  602. }
  603. bool MemoryManager::can_read_without_faulting(const Process& process, VirtualAddress vaddr, size_t size) const
  604. {
  605. // FIXME: Use the size argument!
  606. UNUSED_PARAM(size);
  607. auto* pte = const_cast<MemoryManager*>(this)->pte(process.page_directory(), vaddr);
  608. if (!pte)
  609. return false;
  610. return pte->is_present();
  611. }
  612. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  613. {
  614. if (!is_user_address(vaddr))
  615. return false;
  616. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  617. }
  618. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  619. {
  620. if (!is_user_address(vaddr))
  621. return false;
  622. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  623. }
  624. void MemoryManager::register_vmobject(VMObject& vmobject)
  625. {
  626. InterruptDisabler disabler;
  627. m_vmobjects.append(&vmobject);
  628. }
  629. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  630. {
  631. InterruptDisabler disabler;
  632. m_vmobjects.remove(&vmobject);
  633. }
  634. void MemoryManager::register_region(Region& region)
  635. {
  636. InterruptDisabler disabler;
  637. if (region.vaddr().get() >= 0xc0000000)
  638. m_kernel_regions.append(&region);
  639. else
  640. m_user_regions.append(&region);
  641. }
  642. void MemoryManager::unregister_region(Region& region)
  643. {
  644. InterruptDisabler disabler;
  645. if (region.vaddr().get() >= 0xc0000000)
  646. m_kernel_regions.remove(&region);
  647. else
  648. m_user_regions.remove(&region);
  649. }
  650. void MemoryManager::dump_kernel_regions()
  651. {
  652. klog() << "Kernel regions:";
  653. klog() << "BEGIN END SIZE ACCESS NAME";
  654. for (auto& region : MM.m_kernel_regions) {
  655. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  656. }
  657. }
  658. }