AnonymousVMObject.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <Kernel/Arch/SmapDisabler.h>
  7. #include <Kernel/Debug.h>
  8. #include <Kernel/Memory/AnonymousVMObject.h>
  9. #include <Kernel/Memory/MemoryManager.h>
  10. #include <Kernel/Memory/PhysicalPage.h>
  11. #include <Kernel/Process.h>
  12. namespace Kernel::Memory {
  13. ErrorOr<NonnullRefPtr<VMObject>> AnonymousVMObject::try_clone()
  14. {
  15. // We need to acquire our lock so we copy a sane state
  16. SpinlockLocker lock(m_lock);
  17. if (is_purgeable() && is_volatile()) {
  18. // If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
  19. // object, effectively "pre-purging" it in the child process.
  20. auto clone = TRY(try_create_purgeable_with_size(size(), AllocationStrategy::None));
  21. clone->m_volatile = true;
  22. return clone;
  23. }
  24. // We're the parent. Since we're about to become COW we need to
  25. // commit the number of pages that we need to potentially allocate
  26. // so that the parent is still guaranteed to be able to have all
  27. // non-volatile memory available.
  28. size_t new_cow_pages_needed = page_count();
  29. dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
  30. auto committed_pages = TRY(MM.commit_user_physical_pages(new_cow_pages_needed));
  31. // Create or replace the committed cow pages. When cloning a previously
  32. // cloned vmobject, we want to essentially "fork", leaving us and the
  33. // new clone with one set of shared committed cow pages, and the original
  34. // one would keep the one it still has. This ensures that the original
  35. // one and this one, as well as the clone have sufficient resources
  36. // to cow all pages as needed
  37. auto new_shared_committed_cow_pages = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) SharedCommittedCowPages(move(committed_pages))));
  38. auto clone = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(*this, *new_shared_committed_cow_pages)));
  39. m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);
  40. // Both original and clone become COW. So create a COW map for ourselves
  41. // or reset all pages to be copied again if we were previously cloned
  42. ensure_or_reset_cow_map();
  43. if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
  44. // The parent vmobject didn't use up all committed pages. When
  45. // cloning (fork) we will overcommit. For this purpose we drop all
  46. // lazy-commit references and replace them with shared zero pages.
  47. for (size_t i = 0; i < page_count(); i++) {
  48. auto& page = clone->m_physical_pages[i];
  49. if (page && page->is_lazy_committed_page()) {
  50. page = MM.shared_zero_page();
  51. }
  52. }
  53. }
  54. return clone;
  55. }
  56. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
  57. {
  58. Optional<CommittedPhysicalPageSet> committed_pages;
  59. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  60. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  61. }
  62. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
  63. }
  64. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
  65. {
  66. auto contiguous_physical_pages = MM.allocate_contiguous_supervisor_physical_pages(size);
  67. if (contiguous_physical_pages.is_empty())
  68. return ENOMEM;
  69. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(contiguous_physical_pages.span()));
  70. }
  71. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
  72. {
  73. Optional<CommittedPhysicalPageSet> committed_pages;
  74. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  75. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  76. }
  77. auto vmobject = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages))));
  78. vmobject->m_purgeable = true;
  79. return vmobject;
  80. }
  81. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
  82. {
  83. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(physical_pages));
  84. }
  85. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
  86. {
  87. if (paddr.offset(size) < paddr) {
  88. dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
  89. // Since we can't wrap around yet, let's pretend to OOM.
  90. return ENOMEM;
  91. }
  92. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(paddr, size));
  93. }
  94. AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
  95. : VMObject(size)
  96. , m_unused_committed_pages(move(committed_pages))
  97. {
  98. if (strategy == AllocationStrategy::AllocateNow) {
  99. // Allocate all pages right now. We know we can get all because we committed the amount needed
  100. for (size_t i = 0; i < page_count(); ++i)
  101. physical_pages()[i] = m_unused_committed_pages->take_one();
  102. } else {
  103. auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
  104. for (size_t i = 0; i < page_count(); ++i)
  105. physical_pages()[i] = initial_page;
  106. }
  107. }
  108. AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
  109. : VMObject(size)
  110. {
  111. VERIFY(paddr.page_base() == paddr);
  112. for (size_t i = 0; i < page_count(); ++i)
  113. physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
  114. }
  115. AnonymousVMObject::AnonymousVMObject(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
  116. : VMObject(physical_pages.size() * PAGE_SIZE)
  117. {
  118. for (size_t i = 0; i < physical_pages.size(); ++i) {
  119. m_physical_pages[i] = physical_pages[i];
  120. }
  121. }
  122. AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages)
  123. : VMObject(other)
  124. , m_shared_committed_cow_pages(move(shared_committed_cow_pages))
  125. , m_purgeable(other.m_purgeable)
  126. {
  127. ensure_cow_map();
  128. }
  129. AnonymousVMObject::~AnonymousVMObject()
  130. {
  131. }
  132. size_t AnonymousVMObject::purge()
  133. {
  134. SpinlockLocker lock(m_lock);
  135. if (!is_purgeable() || !is_volatile())
  136. return 0;
  137. size_t total_pages_purged = 0;
  138. for (auto& page : m_physical_pages) {
  139. VERIFY(page);
  140. if (page->is_shared_zero_page())
  141. continue;
  142. page = MM.shared_zero_page();
  143. ++total_pages_purged;
  144. }
  145. m_was_purged = true;
  146. for_each_region([](Region& region) {
  147. region.remap();
  148. });
  149. return total_pages_purged;
  150. }
  151. ErrorOr<void> AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
  152. {
  153. VERIFY(is_purgeable());
  154. SpinlockLocker locker(m_lock);
  155. was_purged = m_was_purged;
  156. if (m_volatile == is_volatile)
  157. return {};
  158. if (is_volatile) {
  159. // When a VMObject is made volatile, it gives up all of its committed memory.
  160. // Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
  161. for (auto& page : m_physical_pages) {
  162. if (page && page->is_lazy_committed_page())
  163. page = MM.shared_zero_page();
  164. }
  165. m_unused_committed_pages = {};
  166. m_shared_committed_cow_pages = nullptr;
  167. if (!m_cow_map.is_null())
  168. m_cow_map = {};
  169. m_volatile = true;
  170. m_was_purged = false;
  171. for_each_region([&](auto& region) { region.remap(); });
  172. return {};
  173. }
  174. // When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
  175. // If that fails, we return false to indicate that memory allocation failed.
  176. size_t committed_pages_needed = 0;
  177. for (auto& page : m_physical_pages) {
  178. VERIFY(page);
  179. if (page->is_shared_zero_page())
  180. ++committed_pages_needed;
  181. }
  182. if (!committed_pages_needed) {
  183. m_volatile = false;
  184. return {};
  185. }
  186. m_unused_committed_pages = TRY(MM.commit_user_physical_pages(committed_pages_needed));
  187. for (auto& page : m_physical_pages) {
  188. if (page->is_shared_zero_page())
  189. page = MM.lazy_committed_page();
  190. }
  191. m_volatile = false;
  192. m_was_purged = false;
  193. for_each_region([&](auto& region) { region.remap(); });
  194. return {};
  195. }
  196. NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
  197. {
  198. return m_unused_committed_pages->take_one();
  199. }
  200. Bitmap& AnonymousVMObject::ensure_cow_map()
  201. {
  202. if (m_cow_map.is_null())
  203. m_cow_map = Bitmap { page_count(), true };
  204. return m_cow_map;
  205. }
  206. void AnonymousVMObject::ensure_or_reset_cow_map()
  207. {
  208. if (m_cow_map.is_null())
  209. ensure_cow_map();
  210. else
  211. m_cow_map.fill(true);
  212. }
  213. bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
  214. {
  215. auto const& page = physical_pages()[page_index];
  216. if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
  217. return true;
  218. if (is_shared)
  219. return false;
  220. return !m_cow_map.is_null() && m_cow_map.get(page_index);
  221. }
  222. void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
  223. {
  224. ensure_cow_map().set(page_index, cow);
  225. }
  226. size_t AnonymousVMObject::cow_pages() const
  227. {
  228. if (m_cow_map.is_null())
  229. return 0;
  230. return m_cow_map.count_slow(true);
  231. }
  232. PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
  233. {
  234. VERIFY_INTERRUPTS_DISABLED();
  235. SpinlockLocker lock(m_lock);
  236. if (is_volatile()) {
  237. // A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
  238. dbgln("COW fault in volatile region, will crash.");
  239. return PageFaultResponse::ShouldCrash;
  240. }
  241. auto& page_slot = physical_pages()[page_index];
  242. // If we were sharing committed COW pages with another process, and the other process
  243. // has exhausted the supply, we can stop counting the shared pages.
  244. if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
  245. m_shared_committed_cow_pages = nullptr;
  246. if (page_slot->ref_count() == 1) {
  247. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
  248. set_should_cow(page_index, false);
  249. if (m_shared_committed_cow_pages) {
  250. m_shared_committed_cow_pages->uncommit_one();
  251. if (m_shared_committed_cow_pages->is_empty())
  252. m_shared_committed_cow_pages = nullptr;
  253. }
  254. return PageFaultResponse::Continue;
  255. }
  256. RefPtr<PhysicalPage> page;
  257. if (m_shared_committed_cow_pages) {
  258. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!");
  259. page = m_shared_committed_cow_pages->take_one();
  260. } else {
  261. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!");
  262. page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  263. if (page.is_null()) {
  264. dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
  265. return PageFaultResponse::OutOfMemory;
  266. }
  267. }
  268. dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
  269. {
  270. SpinlockLocker mm_locker(s_mm_lock);
  271. u8* dest_ptr = MM.quickmap_page(*page);
  272. SmapDisabler disabler;
  273. void* fault_at;
  274. if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
  275. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  276. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
  277. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  278. else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
  279. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
  280. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  281. else
  282. VERIFY_NOT_REACHED();
  283. }
  284. MM.unquickmap_page();
  285. }
  286. page_slot = move(page);
  287. set_should_cow(page_index, false);
  288. return PageFaultResponse::Continue;
  289. }
  290. AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
  291. : m_committed_pages(move(committed_pages))
  292. {
  293. }
  294. AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages()
  295. {
  296. }
  297. NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
  298. {
  299. SpinlockLocker locker(m_lock);
  300. return m_committed_pages.take_one();
  301. }
  302. void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
  303. {
  304. SpinlockLocker locker(m_lock);
  305. m_committed_pages.uncommit_one();
  306. }
  307. }