Process.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. #pragma once
  2. #include "types.h"
  3. #include "TSS.h"
  4. #include "i386.h"
  5. #include "TTY.h"
  6. #include "Syscall.h"
  7. #include <Kernel/VirtualFileSystem.h>
  8. #include <Kernel/UnixTypes.h>
  9. #include <AK/InlineLinkedList.h>
  10. #include <AK/AKString.h>
  11. #include <AK/Vector.h>
  12. #include <AK/WeakPtr.h>
  13. #include <AK/Weakable.h>
  14. #include <AK/Lock.h>
  15. class FileDescriptor;
  16. class PageDirectory;
  17. class Region;
  18. class VMObject;
  19. class Zone;
  20. class WSWindow;
  21. class GraphicsBitmap;
  22. #define COOL_GLOBALS
  23. #ifdef COOL_GLOBALS
  24. struct CoolGlobals {
  25. pid_t current_pid;
  26. };
  27. extern CoolGlobals* g_cool_globals;
  28. #endif
  29. enum class ShouldUnblockProcess { No = 0, Yes };
  30. struct SignalActionData {
  31. LinearAddress handler_or_sigaction;
  32. dword mask { 0 };
  33. int flags { 0 };
  34. LinearAddress restorer;
  35. };
  36. struct DisplayInfo {
  37. unsigned width;
  38. unsigned height;
  39. unsigned bpp;
  40. unsigned pitch;
  41. };
  42. class Process : public InlineLinkedListNode<Process>, public Weakable<Process> {
  43. friend class InlineLinkedListNode<Process>;
  44. public:
  45. static Process* create_kernel_process(String&& name, void (*entry)());
  46. static Process* create_user_process(const String& path, uid_t, gid_t, pid_t ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
  47. ~Process();
  48. static Vector<pid_t> all_pids();
  49. static Vector<Process*> all_processes();
  50. static void finalize_dying_processes();
  51. enum State {
  52. Invalid = 0,
  53. Runnable,
  54. Running,
  55. Skip1SchedulerPass,
  56. Skip0SchedulerPasses,
  57. Dying,
  58. Dead,
  59. Stopped,
  60. BeingInspected,
  61. BlockedLurking,
  62. BlockedSleep,
  63. BlockedWait,
  64. BlockedRead,
  65. BlockedWrite,
  66. BlockedSignal,
  67. BlockedSelect,
  68. BlockedConnect,
  69. };
  70. enum Priority {
  71. LowPriority,
  72. NormalPriority,
  73. HighPriority,
  74. };
  75. enum RingLevel {
  76. Ring0 = 0,
  77. Ring3 = 3,
  78. };
  79. bool is_ring0() const { return m_ring == Ring0; }
  80. bool is_ring3() const { return m_ring == Ring3; }
  81. bool is_stopped() const { return m_state == Stopped; }
  82. bool is_blocked() const
  83. {
  84. return m_state == BlockedSleep || m_state == BlockedWait || m_state == BlockedRead || m_state == BlockedWrite || m_state == BlockedSignal || m_state == BlockedSelect;
  85. }
  86. PageDirectory& page_directory() { return *m_page_directory; }
  87. const PageDirectory& page_directory() const { return *m_page_directory; }
  88. bool in_kernel() const { return (m_tss.cs & 0x03) == 0; }
  89. static Process* from_pid(pid_t);
  90. void set_priority(Priority p) { m_priority = p; }
  91. Priority priority() const { return m_priority; }
  92. const String& name() const { return m_name; }
  93. pid_t pid() const { return m_pid; }
  94. pid_t sid() const { return m_sid; }
  95. pid_t pgid() const { return m_pgid; }
  96. dword ticks() const { return m_ticks; }
  97. word selector() const { return m_far_ptr.selector; }
  98. TSS32& tss() { return m_tss; }
  99. State state() const { return m_state; }
  100. uid_t uid() const { return m_uid; }
  101. gid_t gid() const { return m_gid; }
  102. const HashTable<gid_t>& gids() const { return m_gids; }
  103. uid_t euid() const { return m_euid; }
  104. gid_t egid() const { return m_egid; }
  105. pid_t ppid() const { return m_ppid; }
  106. mode_t umask() const { return m_umask; }
  107. bool in_group(gid_t) const;
  108. const FarPtr& far_ptr() const { return m_far_ptr; }
  109. FileDescriptor* file_descriptor(int fd);
  110. const FileDescriptor* file_descriptor(int fd) const;
  111. void block(Process::State);
  112. void unblock();
  113. void set_wakeup_time(dword t) { m_wakeup_time = t; }
  114. dword wakeup_time() const { return m_wakeup_time; }
  115. template<typename Callback> static void for_each(Callback);
  116. template<typename Callback> static void for_each_in_pgrp(pid_t, Callback);
  117. template<typename Callback> static void for_each_in_state(State, Callback);
  118. template<typename Callback> static void for_each_living(Callback);
  119. template<typename Callback> void for_each_child(Callback);
  120. bool tick();
  121. void set_ticks_left(dword t) { m_ticks_left = t; }
  122. dword ticks_left() const { return m_ticks_left; }
  123. dword kernel_stack_base() const { return (dword)m_kernel_stack; };
  124. dword kernel_stack_for_signal_handler_base() const { return (dword)m_kernel_stack_for_signal_handler; };
  125. void set_selector(word s) { m_far_ptr.selector = s; }
  126. void set_state(State s) { m_state = s; }
  127. void die();
  128. void finalize();
  129. pid_t sys$setsid();
  130. pid_t sys$getsid(pid_t);
  131. int sys$setpgid(pid_t pid, pid_t pgid);
  132. pid_t sys$getpgrp();
  133. pid_t sys$getpgid(pid_t);
  134. uid_t sys$getuid();
  135. gid_t sys$getgid();
  136. uid_t sys$geteuid();
  137. gid_t sys$getegid();
  138. pid_t sys$getpid();
  139. pid_t sys$getppid();
  140. mode_t sys$umask(mode_t);
  141. int sys$open(const char* path, int options, mode_t mode = 0);
  142. int sys$close(int fd);
  143. ssize_t sys$read(int fd, byte*, ssize_t);
  144. ssize_t sys$write(int fd, const byte*, ssize_t);
  145. int sys$fstat(int fd, stat*);
  146. int sys$lstat(const char*, stat*);
  147. int sys$stat(const char*, stat*);
  148. int sys$lseek(int fd, off_t, int whence);
  149. int sys$kill(pid_t pid, int sig);
  150. int sys$geterror() { return m_error; }
  151. [[noreturn]] void sys$exit(int status);
  152. [[noreturn]] void sys$sigreturn();
  153. pid_t sys$waitpid(pid_t, int* wstatus, int options);
  154. void* sys$mmap(const Syscall::SC_mmap_params*);
  155. int sys$munmap(void*, size_t size);
  156. int sys$set_mmap_name(void*, size_t, const char*);
  157. int sys$select(const Syscall::SC_select_params*);
  158. int sys$poll(pollfd*, int nfds, int timeout);
  159. ssize_t sys$get_dir_entries(int fd, void*, ssize_t);
  160. int sys$getcwd(char*, ssize_t);
  161. int sys$chdir(const char*);
  162. int sys$sleep(unsigned seconds);
  163. int sys$usleep(useconds_t usec);
  164. int sys$gettimeofday(timeval*);
  165. int sys$gethostname(char*, ssize_t);
  166. int sys$uname(utsname*);
  167. int sys$readlink(const char*, char*, ssize_t);
  168. int sys$ttyname_r(int fd, char*, ssize_t);
  169. int sys$ptsname_r(int fd, char*, ssize_t);
  170. pid_t sys$fork(RegisterDump&);
  171. int sys$execve(const char* filename, const char** argv, const char** envp);
  172. int sys$isatty(int fd);
  173. int sys$getdtablesize();
  174. int sys$dup(int oldfd);
  175. int sys$dup2(int oldfd, int newfd);
  176. int sys$sigaction(int signum, const sigaction* act, sigaction* old_act);
  177. int sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set);
  178. int sys$sigpending(sigset_t*);
  179. int sys$getgroups(ssize_t, gid_t*);
  180. int sys$setgroups(ssize_t, const gid_t*);
  181. int sys$pipe(int* pipefd);
  182. int sys$killpg(int pgrp, int sig);
  183. int sys$setgid(gid_t);
  184. int sys$setuid(uid_t);
  185. unsigned sys$alarm(unsigned seconds);
  186. int sys$access(const char* pathname, int mode);
  187. int sys$fcntl(int fd, int cmd, dword extra_arg);
  188. int sys$ioctl(int fd, unsigned request, unsigned arg);
  189. int sys$mkdir(const char* pathname, mode_t mode);
  190. clock_t sys$times(tms*);
  191. int sys$utime(const char* pathname, const struct utimbuf*);
  192. int sys$link(const char* old_path, const char* new_path);
  193. int sys$unlink(const char* pathname);
  194. int sys$symlink(const char* target, const char* linkpath);
  195. int sys$rmdir(const char* pathname);
  196. int sys$read_tsc(dword* lsw, dword* msw);
  197. int sys$chmod(const char* pathname, mode_t);
  198. int sys$fchmod(int fd, mode_t);
  199. int sys$chown(const char* pathname, uid_t, gid_t);
  200. int sys$socket(int domain, int type, int protocol);
  201. int sys$bind(int sockfd, const sockaddr* addr, socklen_t);
  202. int sys$listen(int sockfd, int backlog);
  203. int sys$accept(int sockfd, sockaddr*, socklen_t*);
  204. int sys$connect(int sockfd, const sockaddr*, socklen_t);
  205. int sys$restore_signal_mask(dword mask);
  206. int sys$create_shared_buffer(pid_t peer_pid, size_t, void** buffer);
  207. void* sys$get_shared_buffer(int shared_buffer_id);
  208. int sys$release_shared_buffer(int shared_buffer_id);
  209. bool wait_for_connect(Socket&, int& error);
  210. static void initialize();
  211. [[noreturn]] void crash();
  212. [[nodiscard]] static int reap(Process&);
  213. const TTY* tty() const { return m_tty; }
  214. void set_tty(TTY* tty) { m_tty = tty; }
  215. size_t region_count() const { return m_regions.size(); }
  216. const Vector<Retained<Region>>& regions() const { return m_regions; }
  217. void dump_regions();
  218. void did_schedule() { ++m_times_scheduled; }
  219. dword times_scheduled() const { return m_times_scheduled; }
  220. dword m_ticks_in_user { 0 };
  221. dword m_ticks_in_kernel { 0 };
  222. dword m_ticks_in_user_for_dead_children { 0 };
  223. dword m_ticks_in_kernel_for_dead_children { 0 };
  224. pid_t waitee_pid() const { return m_waitee_pid; }
  225. dword frame_ptr() const { return m_tss.ebp; }
  226. dword stack_ptr() const { return m_tss.esp; }
  227. dword stack_top() const { return m_tss.ss == 0x10 ? m_stack_top0 : m_stack_top3; }
  228. bool validate_read_from_kernel(LinearAddress) const;
  229. bool validate_read(const void*, ssize_t) const;
  230. bool validate_write(void*, ssize_t) const;
  231. bool validate_read_str(const char* str);
  232. template<typename T> bool validate_read_typed(T* value, size_t count = 1) { return validate_read(value, sizeof(T) * count); }
  233. template<typename T> bool validate_write_typed(T* value, size_t count = 1) { return validate_write(value, sizeof(T) * count); }
  234. Inode& cwd_inode();
  235. Inode* executable_inode() { return m_executable.ptr(); }
  236. size_t number_of_open_file_descriptors() const;
  237. size_t max_open_file_descriptors() const { return m_max_open_file_descriptors; }
  238. void send_signal(byte signal, Process* sender);
  239. ShouldUnblockProcess dispatch_one_pending_signal();
  240. ShouldUnblockProcess dispatch_signal(byte signal);
  241. bool has_unmasked_pending_signals() const;
  242. void terminate_due_to_signal(byte signal);
  243. size_t amount_virtual() const;
  244. size_t amount_resident() const;
  245. size_t amount_shared() const;
  246. Process* fork(RegisterDump&);
  247. int exec(String path, Vector<String> arguments, Vector<String> environment);
  248. bool is_superuser() const { return m_euid == 0; }
  249. FPUState& fpu_state() { return m_fpu_state; }
  250. bool has_used_fpu() const { return m_has_used_fpu; }
  251. void set_has_used_fpu(bool b) { m_has_used_fpu = b; }
  252. Region* allocate_region_with_vmo(LinearAddress, size_t, Retained<VMObject>&&, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable);
  253. Region* allocate_file_backed_region(LinearAddress, size_t, RetainPtr<Inode>&&, String&& name, bool is_readable, bool is_writable);
  254. Region* allocate_region(LinearAddress, size_t, String&& name, bool is_readable = true, bool is_writable = true, bool commit = true);
  255. bool deallocate_region(Region& region);
  256. private:
  257. friend class MemoryManager;
  258. friend class Scheduler;
  259. friend class Region;
  260. Process(String&& name, uid_t, gid_t, pid_t ppid, RingLevel, RetainPtr<Inode>&& cwd = nullptr, RetainPtr<Inode>&& executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
  261. int do_exec(String path, Vector<String> arguments, Vector<String> environment);
  262. void push_value_on_stack(dword);
  263. void make_userspace_stack(Vector<String> arguments, Vector<String> environment);
  264. int alloc_fd();
  265. void set_default_signal_dispositions();
  266. void disown_all_shared_buffers();
  267. void create_signal_trampolines_if_needed();
  268. RetainPtr<PageDirectory> m_page_directory;
  269. Process* m_prev { nullptr };
  270. Process* m_next { nullptr };
  271. String m_name;
  272. void (*m_entry)() { nullptr };
  273. pid_t m_pid { 0 };
  274. uid_t m_uid { 0 };
  275. gid_t m_gid { 0 };
  276. uid_t m_euid { 0 };
  277. gid_t m_egid { 0 };
  278. pid_t m_sid { 0 };
  279. pid_t m_pgid { 0 };
  280. dword m_ticks { 0 };
  281. dword m_ticks_left { 0 };
  282. dword m_stack_top0 { 0 };
  283. dword m_stack_top3 { 0 };
  284. FarPtr m_far_ptr;
  285. State m_state { Invalid };
  286. Priority m_priority { NormalPriority };
  287. dword m_wakeup_time { 0 };
  288. TSS32 m_tss;
  289. TSS32 m_tss_to_resume_kernel;
  290. FPUState m_fpu_state;
  291. struct FileDescriptorAndFlags {
  292. operator bool() const { return !!descriptor; }
  293. void clear() { descriptor = nullptr; flags = 0; }
  294. void set(RetainPtr<FileDescriptor>&& d, dword f = 0) { descriptor = move(d); flags = f; }
  295. RetainPtr<FileDescriptor> descriptor;
  296. dword flags { 0 };
  297. };
  298. Vector<FileDescriptorAndFlags> m_fds;
  299. RingLevel m_ring { Ring0 };
  300. int m_error { 0 };
  301. void* m_kernel_stack { nullptr };
  302. void* m_kernel_stack_for_signal_handler { nullptr };
  303. dword m_times_scheduled { 0 };
  304. pid_t m_waitee_pid { -1 };
  305. int m_blocked_fd { -1 };
  306. Vector<int> m_select_read_fds;
  307. Vector<int> m_select_write_fds;
  308. Vector<int> m_select_exceptional_fds;
  309. timeval m_select_timeout;
  310. bool m_select_has_timeout { false };
  311. size_t m_max_open_file_descriptors { 16 };
  312. SignalActionData m_signal_action_data[32];
  313. dword m_pending_signals { 0 };
  314. dword m_signal_mask { 0 };
  315. RetainPtr<Socket> m_blocked_connecting_socket;
  316. byte m_termination_status { 0 };
  317. byte m_termination_signal { 0 };
  318. RetainPtr<Inode> m_cwd;
  319. RetainPtr<Inode> m_executable;
  320. TTY* m_tty { nullptr };
  321. Region* region_from_range(LinearAddress, size_t);
  322. Vector<Retained<Region>> m_regions;
  323. // FIXME: Implement some kind of ASLR?
  324. LinearAddress m_next_region;
  325. LinearAddress m_return_to_ring3_from_signal_trampoline;
  326. LinearAddress m_return_to_ring0_from_signal_trampoline;
  327. pid_t m_ppid { 0 };
  328. mode_t m_umask { 022 };
  329. bool m_was_interrupted_while_blocked { false };
  330. static void notify_waiters(pid_t waitee, int exit_status, int signal);
  331. HashTable<gid_t> m_gids;
  332. Region* m_signal_stack_user_region { nullptr };
  333. RetainPtr<Region> m_display_framebuffer_region;
  334. bool m_has_used_fpu { false };
  335. };
  336. extern Process* current;
  337. class ProcessInspectionHandle {
  338. public:
  339. ProcessInspectionHandle(Process& process)
  340. : m_process(process)
  341. , m_original_state(process.state())
  342. {
  343. if (&process != current)
  344. m_process.set_state(Process::BeingInspected);
  345. }
  346. ~ProcessInspectionHandle()
  347. {
  348. m_process.set_state(m_original_state);
  349. }
  350. Process& process() { return m_process; }
  351. static OwnPtr<ProcessInspectionHandle> from_pid(pid_t pid)
  352. {
  353. InterruptDisabler disabler;
  354. auto* process = Process::from_pid(pid);
  355. if (process)
  356. return make<ProcessInspectionHandle>(*process);
  357. return nullptr;
  358. }
  359. Process* operator->() { return &m_process; }
  360. Process& operator*() { return m_process; }
  361. private:
  362. Process& m_process;
  363. Process::State m_original_state { Process::Invalid };
  364. };
  365. extern const char* to_string(Process::State);
  366. extern const char* to_string(Process::Priority);
  367. extern void block(Process::State);
  368. extern void sleep(dword ticks);
  369. extern InlineLinkedList<Process>* g_processes;
  370. template<typename Callback>
  371. inline void Process::for_each(Callback callback)
  372. {
  373. ASSERT_INTERRUPTS_DISABLED();
  374. for (auto* process = g_processes->head(); process;) {
  375. auto* next_process = process->next();
  376. if (!callback(*process))
  377. break;
  378. process = next_process;
  379. }
  380. }
  381. template<typename Callback>
  382. inline void Process::for_each_child(Callback callback)
  383. {
  384. ASSERT_INTERRUPTS_DISABLED();
  385. pid_t my_pid = pid();
  386. for (auto* process = g_processes->head(); process;) {
  387. auto* next_process = process->next();
  388. if (process->ppid() == my_pid) {
  389. if (!callback(*process))
  390. break;
  391. }
  392. process = next_process;
  393. }
  394. }
  395. template<typename Callback>
  396. inline void Process::for_each_in_pgrp(pid_t pgid, Callback callback)
  397. {
  398. ASSERT_INTERRUPTS_DISABLED();
  399. for (auto* process = g_processes->head(); process;) {
  400. auto* next_process = process->next();
  401. if (process->pgid() == pgid) {
  402. if (!callback(*process))
  403. break;
  404. }
  405. process = next_process;
  406. }
  407. }
  408. template<typename Callback>
  409. inline void Process::for_each_in_state(State state, Callback callback)
  410. {
  411. ASSERT_INTERRUPTS_DISABLED();
  412. for (auto* process = g_processes->head(); process;) {
  413. auto* next_process = process->next();
  414. if (process->state() == state)
  415. callback(*process);
  416. process = next_process;
  417. }
  418. }
  419. template<typename Callback>
  420. inline void Process::for_each_living(Callback callback)
  421. {
  422. ASSERT_INTERRUPTS_DISABLED();
  423. for (auto* process = g_processes->head(); process;) {
  424. auto* next_process = process->next();
  425. if (process->state() != Process::Dead && process->state() != Process::Dying)
  426. callback(*process);
  427. process = next_process;
  428. }
  429. }
  430. inline bool InodeMetadata::may_read(Process& process) const
  431. {
  432. return may_read(process.euid(), process.gids());
  433. }
  434. inline bool InodeMetadata::may_write(Process& process) const
  435. {
  436. return may_write(process.euid(), process.gids());
  437. }
  438. inline bool InodeMetadata::may_execute(Process& process) const
  439. {
  440. return may_execute(process.euid(), process.gids());
  441. }