kmalloc.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. /*
  7. * Really really *really* Q&D malloc() and free() implementations
  8. * just to get going. Don't ever let anyone see this shit. :^)
  9. */
  10. #include <AK/Assertions.h>
  11. #include <AK/Types.h>
  12. #include <Kernel/Debug.h>
  13. #include <Kernel/Heap/Heap.h>
  14. #include <Kernel/Heap/kmalloc.h>
  15. #include <Kernel/KSyms.h>
  16. #include <Kernel/Locking/Spinlock.h>
  17. #include <Kernel/Memory/MemoryManager.h>
  18. #include <Kernel/Panic.h>
  19. #include <Kernel/PerformanceManager.h>
  20. #include <Kernel/Sections.h>
  21. #include <Kernel/StdLib.h>
  22. #if ARCH(I386)
  23. static constexpr size_t CHUNK_SIZE = 32;
  24. #else
  25. static constexpr size_t CHUNK_SIZE = 64;
  26. #endif
  27. #define POOL_SIZE (2 * MiB)
  28. #define ETERNAL_RANGE_SIZE (4 * MiB)
  29. namespace std {
  30. const nothrow_t nothrow;
  31. }
  32. static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace()
  33. struct KmallocSubheap {
  34. KmallocSubheap(u8* base, size_t size)
  35. : allocator(base, size)
  36. {
  37. }
  38. IntrusiveListNode<KmallocSubheap> list_node;
  39. Heap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE> allocator;
  40. };
  41. struct KmallocGlobalData {
  42. static constexpr size_t minimum_subheap_size = 1 * MiB;
  43. KmallocGlobalData(u8* initial_heap, size_t initial_heap_size)
  44. {
  45. add_subheap(initial_heap, initial_heap_size);
  46. }
  47. void add_subheap(u8* storage, size_t storage_size)
  48. {
  49. dbgln("Adding kmalloc subheap @ {} with size {}", storage, storage_size);
  50. auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE);
  51. subheaps.append(*subheap);
  52. }
  53. void* allocate(size_t size)
  54. {
  55. VERIFY(!expansion_in_progress);
  56. for (auto& subheap : subheaps) {
  57. if (auto* ptr = subheap.allocator.allocate(size))
  58. return ptr;
  59. }
  60. if (!try_expand(size)) {
  61. PANIC("OOM when trying to expand kmalloc heap.");
  62. }
  63. return allocate(size);
  64. }
  65. void deallocate(void* ptr)
  66. {
  67. VERIFY(!expansion_in_progress);
  68. for (auto& subheap : subheaps) {
  69. if (subheap.allocator.contains(ptr)) {
  70. subheap.allocator.deallocate(ptr);
  71. return;
  72. }
  73. }
  74. PANIC("Bogus pointer {:p} passed to kfree()", ptr);
  75. }
  76. size_t allocated_bytes() const
  77. {
  78. size_t total = 0;
  79. for (auto const& subheap : subheaps)
  80. total += subheap.allocator.allocated_bytes();
  81. return total;
  82. }
  83. size_t free_bytes() const
  84. {
  85. size_t total = 0;
  86. for (auto const& subheap : subheaps)
  87. total += subheap.allocator.free_bytes();
  88. return total;
  89. }
  90. bool try_expand(size_t allocation_request)
  91. {
  92. VERIFY(!expansion_in_progress);
  93. TemporaryChange change(expansion_in_progress, true);
  94. auto new_subheap_base = expansion_data->next_virtual_address;
  95. Checked<size_t> padded_allocation_request = allocation_request;
  96. padded_allocation_request *= 2;
  97. padded_allocation_request += PAGE_SIZE;
  98. if (padded_allocation_request.has_overflow()) {
  99. PANIC("Integer overflow during kmalloc heap expansion");
  100. }
  101. size_t new_subheap_size = max(minimum_subheap_size, Memory::page_round_up(padded_allocation_request.value()));
  102. dbgln("Unable to allocate {}, expanding kmalloc heap", allocation_request);
  103. if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) {
  104. // FIXME: Dare to return false and allow kmalloc() to fail!
  105. PANIC("Out of address space when expanding kmalloc heap.");
  106. }
  107. auto physical_pages_or_error = MM.commit_user_physical_pages(new_subheap_size / PAGE_SIZE);
  108. if (physical_pages_or_error.is_error()) {
  109. // FIXME: Dare to return false!
  110. PANIC("Out of physical pages when expanding kmalloc heap.");
  111. }
  112. auto physical_pages = physical_pages_or_error.release_value();
  113. expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size);
  114. auto cpu_supports_nx = Processor::current().has_feature(CPUFeature::NX);
  115. SpinlockLocker mm_locker(Memory::s_mm_lock);
  116. SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
  117. for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) {
  118. // FIXME: We currently leak physical memory when mapping it into the kmalloc heap.
  119. auto& page = physical_pages.take_one().leak_ref();
  120. auto* pte = MM.pte(MM.kernel_page_directory(), vaddr);
  121. VERIFY(pte);
  122. pte->set_physical_page_base(page.paddr().get());
  123. pte->set_global(true);
  124. pte->set_user_allowed(false);
  125. pte->set_writable(true);
  126. if (cpu_supports_nx)
  127. pte->set_execute_disabled(true);
  128. pte->set_present(true);
  129. }
  130. MM.flush_tlb(&MM.kernel_page_directory(), new_subheap_base, new_subheap_size / PAGE_SIZE);
  131. add_subheap(new_subheap_base.as_ptr(), new_subheap_size);
  132. return true;
  133. }
  134. void enable_expansion()
  135. {
  136. // FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit.
  137. auto virtual_range = MM.kernel_page_directory().range_allocator().try_allocate_anywhere(64 * MiB, 1 * MiB);
  138. expansion_data = KmallocGlobalData::ExpansionData {
  139. .virtual_range = virtual_range.value(),
  140. .next_virtual_address = virtual_range.value().base(),
  141. };
  142. // Make sure the entire kmalloc VM range is backed by page tables.
  143. // This avoids having to deal with lazy page table allocation during heap expansion.
  144. SpinlockLocker mm_locker(Memory::s_mm_lock);
  145. SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
  146. for (auto vaddr = virtual_range.value().base(); vaddr < virtual_range.value().end(); vaddr = vaddr.offset(PAGE_SIZE)) {
  147. MM.ensure_pte(MM.kernel_page_directory(), vaddr);
  148. }
  149. }
  150. struct ExpansionData {
  151. Memory::VirtualRange virtual_range;
  152. VirtualAddress next_virtual_address;
  153. };
  154. Optional<ExpansionData> expansion_data;
  155. IntrusiveList<&KmallocSubheap::list_node> subheaps;
  156. bool expansion_in_progress { false };
  157. };
  158. READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global;
  159. alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)];
  160. // Treat the heap as logically separate from .bss
  161. __attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE];
  162. __attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE];
  163. static size_t g_kmalloc_bytes_eternal = 0;
  164. static size_t g_kmalloc_call_count;
  165. static size_t g_kfree_call_count;
  166. static size_t g_nested_kfree_calls;
  167. bool g_dump_kmalloc_stacks;
  168. static u8* s_next_eternal_ptr;
  169. READONLY_AFTER_INIT static u8* s_end_of_eternal_range;
  170. void kmalloc_enable_expand()
  171. {
  172. g_kmalloc_global->enable_expansion();
  173. }
  174. static inline void kmalloc_verify_nospinlock_held()
  175. {
  176. // Catch bad callers allocating under spinlock.
  177. if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
  178. VERIFY(!Processor::in_critical());
  179. }
  180. }
  181. UNMAP_AFTER_INIT void kmalloc_init()
  182. {
  183. // Zero out heap since it's placed after end_of_kernel_bss.
  184. memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap));
  185. memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap));
  186. g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(kmalloc_pool_heap, sizeof(kmalloc_pool_heap));
  187. s_lock.initialize();
  188. s_next_eternal_ptr = kmalloc_eternal_heap;
  189. s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_eternal_heap);
  190. }
  191. void* kmalloc_eternal(size_t size)
  192. {
  193. kmalloc_verify_nospinlock_held();
  194. size = round_up_to_power_of_two(size, sizeof(void*));
  195. SpinlockLocker lock(s_lock);
  196. void* ptr = s_next_eternal_ptr;
  197. s_next_eternal_ptr += size;
  198. VERIFY(s_next_eternal_ptr < s_end_of_eternal_range);
  199. g_kmalloc_bytes_eternal += size;
  200. return ptr;
  201. }
  202. void* kmalloc(size_t size)
  203. {
  204. kmalloc_verify_nospinlock_held();
  205. SpinlockLocker lock(s_lock);
  206. ++g_kmalloc_call_count;
  207. if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
  208. dbgln("kmalloc({})", size);
  209. Kernel::dump_backtrace();
  210. }
  211. void* ptr = g_kmalloc_global->allocate(size);
  212. Thread* current_thread = Thread::current();
  213. if (!current_thread)
  214. current_thread = Processor::idle_thread();
  215. if (current_thread)
  216. PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
  217. return ptr;
  218. }
  219. void kfree_sized(void* ptr, size_t size)
  220. {
  221. (void)size;
  222. return kfree(ptr);
  223. }
  224. void kfree(void* ptr)
  225. {
  226. if (!ptr)
  227. return;
  228. kmalloc_verify_nospinlock_held();
  229. SpinlockLocker lock(s_lock);
  230. ++g_kfree_call_count;
  231. ++g_nested_kfree_calls;
  232. if (g_nested_kfree_calls == 1) {
  233. Thread* current_thread = Thread::current();
  234. if (!current_thread)
  235. current_thread = Processor::idle_thread();
  236. if (current_thread)
  237. PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
  238. }
  239. g_kmalloc_global->deallocate(ptr);
  240. --g_nested_kfree_calls;
  241. }
  242. size_t kmalloc_good_size(size_t size)
  243. {
  244. return size;
  245. }
  246. [[gnu::malloc, gnu::alloc_size(1), gnu::alloc_align(2)]] static void* kmalloc_aligned_cxx(size_t size, size_t alignment)
  247. {
  248. VERIFY(alignment <= 4096);
  249. void* ptr = kmalloc(size + alignment + sizeof(ptrdiff_t));
  250. if (ptr == nullptr)
  251. return nullptr;
  252. size_t max_addr = (size_t)ptr + alignment;
  253. void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
  254. ((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
  255. return aligned_ptr;
  256. }
  257. void* operator new(size_t size)
  258. {
  259. void* ptr = kmalloc(size);
  260. VERIFY(ptr);
  261. return ptr;
  262. }
  263. void* operator new(size_t size, const std::nothrow_t&) noexcept
  264. {
  265. return kmalloc(size);
  266. }
  267. void* operator new(size_t size, std::align_val_t al)
  268. {
  269. void* ptr = kmalloc_aligned_cxx(size, (size_t)al);
  270. VERIFY(ptr);
  271. return ptr;
  272. }
  273. void* operator new(size_t size, std::align_val_t al, const std::nothrow_t&) noexcept
  274. {
  275. return kmalloc_aligned_cxx(size, (size_t)al);
  276. }
  277. void* operator new[](size_t size)
  278. {
  279. void* ptr = kmalloc(size);
  280. VERIFY(ptr);
  281. return ptr;
  282. }
  283. void* operator new[](size_t size, const std::nothrow_t&) noexcept
  284. {
  285. return kmalloc(size);
  286. }
  287. void operator delete(void*) noexcept
  288. {
  289. // All deletes in kernel code should have a known size.
  290. VERIFY_NOT_REACHED();
  291. }
  292. void operator delete(void* ptr, size_t size) noexcept
  293. {
  294. return kfree_sized(ptr, size);
  295. }
  296. void operator delete(void* ptr, size_t, std::align_val_t) noexcept
  297. {
  298. return kfree_aligned(ptr);
  299. }
  300. void operator delete[](void*) noexcept
  301. {
  302. // All deletes in kernel code should have a known size.
  303. VERIFY_NOT_REACHED();
  304. }
  305. void operator delete[](void* ptr, size_t size) noexcept
  306. {
  307. return kfree_sized(ptr, size);
  308. }
  309. void get_kmalloc_stats(kmalloc_stats& stats)
  310. {
  311. SpinlockLocker lock(s_lock);
  312. stats.bytes_allocated = g_kmalloc_global->allocated_bytes();
  313. stats.bytes_free = g_kmalloc_global->free_bytes();
  314. stats.bytes_eternal = g_kmalloc_bytes_eternal;
  315. stats.kmalloc_call_count = g_kmalloc_call_count;
  316. stats.kfree_call_count = g_kfree_call_count;
  317. }