Region.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Arch/x86/PageFault.h>
  9. #include <Kernel/Debug.h>
  10. #include <Kernel/FileSystem/Inode.h>
  11. #include <Kernel/Memory/AnonymousVMObject.h>
  12. #include <Kernel/Memory/MemoryManager.h>
  13. #include <Kernel/Memory/PageDirectory.h>
  14. #include <Kernel/Memory/Region.h>
  15. #include <Kernel/Memory/SharedInodeVMObject.h>
  16. #include <Kernel/Panic.h>
  17. #include <Kernel/Process.h>
  18. #include <Kernel/Scheduler.h>
  19. #include <Kernel/Thread.h>
  20. namespace Kernel::Memory {
  21. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  22. : m_range(range)
  23. , m_offset_in_vmobject(offset_in_vmobject)
  24. , m_vmobject(move(vmobject))
  25. , m_name(move(name))
  26. , m_access(access | ((access & 0x7) << 4))
  27. , m_shared(shared)
  28. , m_cacheable(cacheable == Cacheable::Yes)
  29. {
  30. VERIFY(m_range.base().is_page_aligned());
  31. VERIFY(m_range.size());
  32. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  33. m_vmobject->add_region(*this);
  34. if (is_kernel())
  35. MM.register_kernel_region(*this);
  36. }
  37. Region::~Region()
  38. {
  39. if (is_writable() && vmobject().is_shared_inode()) {
  40. // FIXME: This is very aggressive. Find a way to do less work!
  41. (void)static_cast<SharedInodeVMObject&>(vmobject()).sync();
  42. }
  43. m_vmobject->remove_region(*this);
  44. if (is_kernel())
  45. MM.unregister_kernel_region(*this);
  46. if (m_page_directory) {
  47. SpinlockLocker pd_locker(m_page_directory->get_lock());
  48. if (!is_readable() && !is_writable() && !is_executable()) {
  49. // If the region is "PROT_NONE", we didn't map it in the first place,
  50. // so all we need to do here is deallocate the VM.
  51. m_page_directory->range_allocator().deallocate(range());
  52. } else {
  53. SpinlockLocker mm_locker(s_mm_lock);
  54. unmap_with_locks_held(ShouldDeallocateVirtualRange::Yes, ShouldFlushTLB::Yes, pd_locker, mm_locker);
  55. VERIFY(!m_page_directory);
  56. }
  57. }
  58. }
  59. ErrorOr<NonnullOwnPtr<Region>> Region::try_clone()
  60. {
  61. VERIFY(Process::has_current());
  62. if (m_shared) {
  63. VERIFY(!m_stack);
  64. if (vmobject().is_inode())
  65. VERIFY(vmobject().is_shared_inode());
  66. // Create a new region backed by the same VMObject.
  67. OwnPtr<KString> region_name;
  68. if (m_name)
  69. region_name = TRY(m_name->try_clone());
  70. auto region = TRY(Region::try_create_user_accessible(
  71. m_range, m_vmobject, m_offset_in_vmobject, move(region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  72. region->set_mmap(m_mmap);
  73. region->set_shared(m_shared);
  74. region->set_syscall_region(is_syscall_region());
  75. return region;
  76. }
  77. if (vmobject().is_inode())
  78. VERIFY(vmobject().is_private_inode());
  79. auto vmobject_clone = TRY(vmobject().try_clone());
  80. // Set up a COW region. The parent (this) region becomes COW as well!
  81. if (is_writable())
  82. remap();
  83. OwnPtr<KString> clone_region_name;
  84. if (m_name)
  85. clone_region_name = TRY(m_name->try_clone());
  86. auto clone_region = TRY(Region::try_create_user_accessible(
  87. m_range, move(vmobject_clone), m_offset_in_vmobject, move(clone_region_name), access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared));
  88. if (m_stack) {
  89. VERIFY(is_readable());
  90. VERIFY(is_writable());
  91. VERIFY(vmobject().is_anonymous());
  92. clone_region->set_stack(true);
  93. }
  94. clone_region->set_syscall_region(is_syscall_region());
  95. clone_region->set_mmap(m_mmap);
  96. return clone_region;
  97. }
  98. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  99. {
  100. if (m_vmobject.ptr() == obj.ptr())
  101. return;
  102. m_vmobject->remove_region(*this);
  103. m_vmobject = move(obj);
  104. m_vmobject->add_region(*this);
  105. }
  106. size_t Region::cow_pages() const
  107. {
  108. if (!vmobject().is_anonymous())
  109. return 0;
  110. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  111. }
  112. size_t Region::amount_dirty() const
  113. {
  114. if (!vmobject().is_inode())
  115. return amount_resident();
  116. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  117. }
  118. size_t Region::amount_resident() const
  119. {
  120. size_t bytes = 0;
  121. for (size_t i = 0; i < page_count(); ++i) {
  122. auto const* page = physical_page(i);
  123. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  124. bytes += PAGE_SIZE;
  125. }
  126. return bytes;
  127. }
  128. size_t Region::amount_shared() const
  129. {
  130. size_t bytes = 0;
  131. for (size_t i = 0; i < page_count(); ++i) {
  132. auto const* page = physical_page(i);
  133. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  134. bytes += PAGE_SIZE;
  135. }
  136. return bytes;
  137. }
  138. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  139. {
  140. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  141. }
  142. ErrorOr<NonnullOwnPtr<Region>> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  143. {
  144. return adopt_nonnull_own_or_enomem(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  145. }
  146. bool Region::should_cow(size_t page_index) const
  147. {
  148. if (!vmobject().is_anonymous())
  149. return false;
  150. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  151. }
  152. void Region::set_should_cow(size_t page_index, bool cow)
  153. {
  154. VERIFY(!m_shared);
  155. if (vmobject().is_anonymous())
  156. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  157. }
  158. bool Region::map_individual_page_impl(size_t page_index)
  159. {
  160. VERIFY(m_page_directory->get_lock().is_locked_by_current_processor());
  161. VERIFY(s_mm_lock.is_locked_by_current_processor());
  162. auto page_vaddr = vaddr_from_page_index(page_index);
  163. bool user_allowed = page_vaddr.get() >= USER_RANGE_BASE && is_user_address(page_vaddr);
  164. if (is_mmap() && !user_allowed) {
  165. PANIC("About to map mmap'ed page at a kernel address");
  166. }
  167. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  168. if (!pte)
  169. return false;
  170. auto* page = physical_page(page_index);
  171. if (!page || (!is_readable() && !is_writable())) {
  172. pte->clear();
  173. } else {
  174. pte->set_cache_disabled(!m_cacheable);
  175. pte->set_physical_page_base(page->paddr().get());
  176. pte->set_present(true);
  177. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  178. pte->set_writable(false);
  179. else
  180. pte->set_writable(is_writable());
  181. if (Processor::current().has_feature(CPUFeature::NX))
  182. pte->set_execute_disabled(!is_executable());
  183. if (Processor::current().has_feature(CPUFeature::PAT))
  184. pte->set_pat(is_write_combine());
  185. pte->set_user_allowed(user_allowed);
  186. }
  187. return true;
  188. }
  189. bool Region::remap_individual_page(size_t page_index, ShouldFlushTLB should_flush_tlb)
  190. {
  191. VERIFY(m_page_directory);
  192. SpinlockLocker page_lock(m_page_directory->get_lock());
  193. SpinlockLocker lock(s_mm_lock);
  194. VERIFY(physical_page(page_index));
  195. bool success = map_individual_page_impl(page_index);
  196. if (should_flush_tlb == ShouldFlushTLB::Yes)
  197. MemoryManager::flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  198. return success;
  199. }
  200. void Region::unmap(ShouldDeallocateVirtualRange should_deallocate_range, ShouldFlushTLB should_flush_tlb)
  201. {
  202. if (!m_page_directory)
  203. return;
  204. SpinlockLocker pd_locker(m_page_directory->get_lock());
  205. SpinlockLocker mm_locker(s_mm_lock);
  206. unmap_with_locks_held(should_deallocate_range, should_flush_tlb, pd_locker, mm_locker);
  207. }
  208. void Region::unmap_with_locks_held(ShouldDeallocateVirtualRange deallocate_range, ShouldFlushTLB should_flush_tlb, SpinlockLocker<RecursiveSpinlock>&, SpinlockLocker<RecursiveSpinlock>&)
  209. {
  210. if (!m_page_directory)
  211. return;
  212. size_t count = page_count();
  213. for (size_t i = 0; i < count; ++i) {
  214. auto vaddr = vaddr_from_page_index(i);
  215. MM.release_pte(*m_page_directory, vaddr, i == count - 1 ? MemoryManager::IsLastPTERelease::Yes : MemoryManager::IsLastPTERelease::No);
  216. }
  217. if (should_flush_tlb == ShouldFlushTLB::Yes)
  218. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_count());
  219. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  220. m_page_directory->range_allocator().deallocate(range());
  221. }
  222. m_page_directory = nullptr;
  223. }
  224. void Region::set_page_directory(PageDirectory& page_directory)
  225. {
  226. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  227. VERIFY(s_mm_lock.is_locked_by_current_processor());
  228. m_page_directory = page_directory;
  229. }
  230. ErrorOr<void> Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  231. {
  232. SpinlockLocker page_lock(page_directory.get_lock());
  233. SpinlockLocker lock(s_mm_lock);
  234. // FIXME: Find a better place for this sanity check(?)
  235. if (is_user() && !is_shared()) {
  236. VERIFY(!vmobject().is_shared_inode());
  237. }
  238. set_page_directory(page_directory);
  239. size_t page_index = 0;
  240. while (page_index < page_count()) {
  241. if (!map_individual_page_impl(page_index))
  242. break;
  243. ++page_index;
  244. }
  245. if (page_index > 0) {
  246. if (should_flush_tlb == ShouldFlushTLB::Yes)
  247. MemoryManager::flush_tlb(m_page_directory, vaddr(), page_index);
  248. if (page_index == page_count())
  249. return {};
  250. }
  251. return ENOMEM;
  252. }
  253. void Region::remap()
  254. {
  255. VERIFY(m_page_directory);
  256. auto result = map(*m_page_directory);
  257. if (result.is_error())
  258. TODO();
  259. }
  260. ErrorOr<void> Region::set_write_combine(bool enable)
  261. {
  262. if (enable && !Processor::current().has_feature(CPUFeature::PAT)) {
  263. dbgln("PAT is not supported, implement MTRR fallback if available");
  264. return Error::from_errno(ENOTSUP);
  265. }
  266. m_write_combine = enable;
  267. remap();
  268. return {};
  269. }
  270. void Region::clear_to_zero()
  271. {
  272. VERIFY(vmobject().is_anonymous());
  273. SpinlockLocker locker(vmobject().m_lock);
  274. for (auto i = 0u; i < page_count(); ++i) {
  275. auto& page = physical_page_slot(i);
  276. VERIFY(page);
  277. if (page->is_shared_zero_page())
  278. continue;
  279. page = MM.shared_zero_page();
  280. }
  281. }
  282. PageFaultResponse Region::handle_fault(PageFault const& fault)
  283. {
  284. auto page_index_in_region = page_index_from_address(fault.vaddr());
  285. if (fault.type() == PageFault::Type::PageNotPresent) {
  286. if (fault.is_read() && !is_readable()) {
  287. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  288. return PageFaultResponse::ShouldCrash;
  289. }
  290. if (fault.is_write() && !is_writable()) {
  291. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  292. return PageFaultResponse::ShouldCrash;
  293. }
  294. if (vmobject().is_inode()) {
  295. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  296. return handle_inode_fault(page_index_in_region);
  297. }
  298. auto& page_slot = physical_page_slot(page_index_in_region);
  299. if (page_slot->is_lazy_committed_page()) {
  300. VERIFY(m_vmobject->is_anonymous());
  301. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  302. if (!remap_individual_page(page_index_in_region))
  303. return PageFaultResponse::OutOfMemory;
  304. return PageFaultResponse::Continue;
  305. }
  306. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  307. return PageFaultResponse::ShouldCrash;
  308. }
  309. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  310. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  311. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  312. auto* phys_page = physical_page(page_index_in_region);
  313. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  314. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  315. return handle_zero_fault(page_index_in_region);
  316. }
  317. return handle_cow_fault(page_index_in_region);
  318. }
  319. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  320. return PageFaultResponse::ShouldCrash;
  321. }
  322. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  323. {
  324. VERIFY_INTERRUPTS_DISABLED();
  325. VERIFY(vmobject().is_anonymous());
  326. auto& page_slot = physical_page_slot(page_index_in_region);
  327. SpinlockLocker locker(vmobject().m_lock);
  328. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  329. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  330. if (!remap_individual_page(page_index_in_region))
  331. return PageFaultResponse::OutOfMemory;
  332. return PageFaultResponse::Continue;
  333. }
  334. auto current_thread = Thread::current();
  335. if (current_thread != nullptr)
  336. current_thread->did_zero_fault();
  337. if (page_slot->is_lazy_committed_page()) {
  338. VERIFY(m_vmobject->is_anonymous());
  339. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  340. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  341. } else {
  342. auto page_or_error = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  343. if (page_or_error.is_error()) {
  344. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  345. return PageFaultResponse::OutOfMemory;
  346. }
  347. page_slot = page_or_error.release_value();
  348. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  349. }
  350. if (!remap_individual_page(page_index_in_region)) {
  351. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  352. return PageFaultResponse::OutOfMemory;
  353. }
  354. return PageFaultResponse::Continue;
  355. }
  356. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  357. {
  358. VERIFY_INTERRUPTS_DISABLED();
  359. auto current_thread = Thread::current();
  360. if (current_thread)
  361. current_thread->did_cow_fault();
  362. if (!vmobject().is_anonymous())
  363. return PageFaultResponse::ShouldCrash;
  364. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  365. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  366. if (!remap_individual_page(page_index_in_region))
  367. return PageFaultResponse::OutOfMemory;
  368. return response;
  369. }
  370. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  371. {
  372. VERIFY_INTERRUPTS_DISABLED();
  373. VERIFY(vmobject().is_inode());
  374. VERIFY(!s_mm_lock.is_locked_by_current_processor());
  375. VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
  376. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  377. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  378. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  379. {
  380. SpinlockLocker locker(inode_vmobject.m_lock);
  381. if (!vmobject_physical_page_entry.is_null()) {
  382. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  383. if (!remap_individual_page(page_index_in_region))
  384. return PageFaultResponse::OutOfMemory;
  385. return PageFaultResponse::Continue;
  386. }
  387. }
  388. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  389. auto current_thread = Thread::current();
  390. if (current_thread)
  391. current_thread->did_inode_fault();
  392. u8 page_buffer[PAGE_SIZE];
  393. auto& inode = inode_vmobject.inode();
  394. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  395. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  396. if (result.is_error()) {
  397. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  398. return PageFaultResponse::ShouldCrash;
  399. }
  400. auto nread = result.value();
  401. if (nread < PAGE_SIZE) {
  402. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  403. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  404. }
  405. SpinlockLocker locker(inode_vmobject.m_lock);
  406. if (!vmobject_physical_page_entry.is_null()) {
  407. // Someone else faulted in this page while we were reading from the inode.
  408. // No harm done (other than some duplicate work), remap the page here and return.
  409. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  410. if (!remap_individual_page(page_index_in_region))
  411. return PageFaultResponse::OutOfMemory;
  412. return PageFaultResponse::Continue;
  413. }
  414. auto vmobject_physical_page_or_error = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  415. if (vmobject_physical_page_or_error.is_error()) {
  416. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  417. return PageFaultResponse::OutOfMemory;
  418. }
  419. vmobject_physical_page_entry = vmobject_physical_page_or_error.release_value();
  420. {
  421. SpinlockLocker mm_locker(s_mm_lock);
  422. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  423. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  424. MM.unquickmap_page();
  425. }
  426. if (!remap_individual_page(page_index_in_region))
  427. return PageFaultResponse::OutOfMemory;
  428. return PageFaultResponse::Continue;
  429. }
  430. }