Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/Time.h>
  9. #include <AK/Types.h>
  10. #include <Kernel/API/Syscall.h>
  11. #include <Kernel/Arch/x86/InterruptDisabler.h>
  12. #include <Kernel/Coredump.h>
  13. #include <Kernel/Debug.h>
  14. #include <Kernel/Devices/DeviceManagement.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/API/POSIX/errno.h>
  19. #include <Kernel/Devices/NullDevice.h>
  20. #include <Kernel/FileSystem/Custody.h>
  21. #include <Kernel/FileSystem/OpenFileDescription.h>
  22. #include <Kernel/FileSystem/VirtualFileSystem.h>
  23. #include <Kernel/KBufferBuilder.h>
  24. #include <Kernel/KSyms.h>
  25. #include <Kernel/Memory/AnonymousVMObject.h>
  26. #include <Kernel/Memory/PageDirectory.h>
  27. #include <Kernel/Memory/SharedInodeVMObject.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/Sections.h>
  32. #include <Kernel/StdLib.h>
  33. #include <Kernel/TTY/TTY.h>
  34. #include <Kernel/Thread.h>
  35. #include <Kernel/ThreadTracer.h>
  36. #include <LibC/limits.h>
  37. namespace Kernel {
  38. static void create_signal_trampoline();
  39. RecursiveSpinlock g_profiling_lock;
  40. static Atomic<pid_t> next_pid;
  41. static Singleton<SpinlockProtected<Process::List>> s_all_instances;
  42. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  43. static Singleton<MutexProtected<OwnPtr<KString>>> s_hostname;
  44. MutexProtected<OwnPtr<KString>>& hostname()
  45. {
  46. return *s_hostname;
  47. }
  48. SpinlockProtected<Process::List>& Process::all_instances()
  49. {
  50. return *s_all_instances;
  51. }
  52. ProcessID Process::allocate_pid()
  53. {
  54. // Overflow is UB, and negative PIDs wreck havoc.
  55. // TODO: Handle PID overflow
  56. // For example: Use an Atomic<u32>, mask the most significant bit,
  57. // retry if PID is already taken as a PID, taken as a TID,
  58. // takes as a PGID, taken as a SID, or zero.
  59. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  60. }
  61. UNMAP_AFTER_INIT void Process::initialize()
  62. {
  63. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  64. // Note: This is called before scheduling is initialized, and before APs are booted.
  65. // So we can "safely" bypass the lock here.
  66. reinterpret_cast<OwnPtr<KString>&>(hostname()) = KString::must_create("courage"sv);
  67. create_signal_trampoline();
  68. }
  69. bool Process::in_group(GroupID gid) const
  70. {
  71. return this->gid() == gid || extra_gids().contains_slow(gid);
  72. }
  73. void Process::kill_threads_except_self()
  74. {
  75. InterruptDisabler disabler;
  76. if (thread_count() <= 1)
  77. return;
  78. auto* current_thread = Thread::current();
  79. for_each_thread([&](Thread& thread) {
  80. if (&thread == current_thread)
  81. return;
  82. if (auto state = thread.state(); state == Thread::State::Dead
  83. || state == Thread::State::Dying)
  84. return;
  85. // We need to detach this thread in case it hasn't been joined
  86. thread.detach();
  87. thread.set_should_die();
  88. });
  89. u32 dropped_lock_count = 0;
  90. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  91. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  92. }
  93. void Process::kill_all_threads()
  94. {
  95. for_each_thread([&](Thread& thread) {
  96. // We need to detach this thread in case it hasn't been joined
  97. thread.detach();
  98. thread.set_should_die();
  99. });
  100. }
  101. void Process::register_new(Process& process)
  102. {
  103. // Note: this is essentially the same like process->ref()
  104. RefPtr<Process> new_process = process;
  105. all_instances().with([&](auto& list) {
  106. list.prepend(process);
  107. });
  108. }
  109. ErrorOr<NonnullRefPtr<Process>> Process::try_create_user_process(RefPtr<Thread>& first_thread, StringView path, UserID uid, GroupID gid, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, TTY* tty)
  110. {
  111. auto parts = path.split_view('/');
  112. if (arguments.is_empty()) {
  113. auto last_part = TRY(KString::try_create(parts.last()));
  114. TRY(arguments.try_append(move(last_part)));
  115. }
  116. auto path_string = TRY(KString::try_create(path));
  117. auto name = TRY(KString::try_create(parts.last()));
  118. auto process = TRY(Process::try_create(first_thread, move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty));
  119. TRY(process->m_fds.try_resize(Process::OpenFileDescriptions::max_open()));
  120. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device();
  121. auto description = TRY(device_to_use_as_tty.open(O_RDWR));
  122. auto setup_description = [&process, &description](int fd) {
  123. process->m_fds.m_fds_metadatas[fd].allocate();
  124. process->m_fds[fd].set(*description);
  125. };
  126. setup_description(0);
  127. setup_description(1);
  128. setup_description(2);
  129. Thread* new_main_thread = nullptr;
  130. u32 prev_flags = 0;
  131. if (auto result = process->exec(move(path_string), move(arguments), move(environment), new_main_thread, prev_flags); result.is_error()) {
  132. dbgln("Failed to exec {}: {}", path, result.error());
  133. first_thread = nullptr;
  134. return result.release_error();
  135. }
  136. register_new(*process);
  137. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize().
  138. process->ref();
  139. return process;
  140. }
  141. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  142. {
  143. auto process_or_error = Process::try_create(first_thread, move(name), UserID(0), GroupID(0), ProcessID(0), true);
  144. if (process_or_error.is_error())
  145. return {};
  146. auto process = process_or_error.release_value();
  147. first_thread->regs().set_ip((FlatPtr)entry);
  148. #if ARCH(I386)
  149. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  150. #else
  151. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  152. #endif
  153. if (do_register == RegisterProcess::Yes)
  154. register_new(*process);
  155. SpinlockLocker lock(g_scheduler_lock);
  156. first_thread->set_affinity(affinity);
  157. first_thread->set_state(Thread::State::Runnable);
  158. return process;
  159. }
  160. void Process::protect_data()
  161. {
  162. m_protected_data_refs.unref([&]() {
  163. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  164. });
  165. }
  166. void Process::unprotect_data()
  167. {
  168. m_protected_data_refs.ref([&]() {
  169. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  170. });
  171. }
  172. ErrorOr<NonnullRefPtr<Process>> Process::try_create(RefPtr<Thread>& first_thread, NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  173. {
  174. auto space = TRY(Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr));
  175. auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty)));
  176. TRY(process->attach_resources(move(space), first_thread, fork_parent));
  177. return process;
  178. }
  179. Process::Process(NonnullOwnPtr<KString> name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  180. : m_name(move(name))
  181. , m_is_kernel_process(is_kernel_process)
  182. , m_executable(move(executable))
  183. , m_cwd(move(cwd))
  184. , m_tty(tty)
  185. , m_wait_blocker_set(*this)
  186. {
  187. // Ensure that we protect the process data when exiting the constructor.
  188. ProtectedDataMutationScope scope { *this };
  189. m_protected_values.pid = allocate_pid();
  190. m_protected_values.ppid = ppid;
  191. m_protected_values.uid = uid;
  192. m_protected_values.gid = gid;
  193. m_protected_values.euid = uid;
  194. m_protected_values.egid = gid;
  195. m_protected_values.suid = uid;
  196. m_protected_values.sgid = gid;
  197. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  198. }
  199. ErrorOr<void> Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  200. {
  201. m_space = move(preallocated_space);
  202. auto create_first_thread = [&] {
  203. if (fork_parent) {
  204. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  205. return Thread::current()->try_clone(*this);
  206. }
  207. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  208. return Thread::try_create(*this);
  209. };
  210. first_thread = TRY(create_first_thread());
  211. if (!fork_parent) {
  212. // FIXME: Figure out if this is really necessary.
  213. first_thread->detach();
  214. }
  215. m_procfs_traits = TRY(ProcessProcFSTraits::try_create({}, *this));
  216. return {};
  217. }
  218. Process::~Process()
  219. {
  220. unprotect_data();
  221. VERIFY(thread_count() == 0); // all threads should have been finalized
  222. VERIFY(!m_alarm_timer);
  223. PerformanceManager::add_process_exit_event(*this);
  224. }
  225. // Make sure the compiler doesn't "optimize away" this function:
  226. extern void signal_trampoline_dummy() __attribute__((used));
  227. void signal_trampoline_dummy()
  228. {
  229. #if ARCH(I386)
  230. // The trampoline preserves the current eax, pushes the signal code and
  231. // then calls the signal handler. We do this because, when interrupting a
  232. // blocking syscall, that syscall may return some special error code in eax;
  233. // This error code would likely be overwritten by the signal handler, so it's
  234. // necessary to preserve it here.
  235. asm(
  236. ".intel_syntax noprefix\n"
  237. ".globl asm_signal_trampoline\n"
  238. "asm_signal_trampoline:\n"
  239. "push ebp\n"
  240. "mov ebp, esp\n"
  241. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  242. "sub esp, 4\n" // align the stack to 16 bytes
  243. "mov eax, [ebp+12]\n" // push the signal code
  244. "push eax\n"
  245. "call [ebp+8]\n" // call the signal handler
  246. "add esp, 8\n"
  247. "mov eax, %P0\n"
  248. "int 0x82\n" // sigreturn syscall
  249. ".globl asm_signal_trampoline_end\n"
  250. "asm_signal_trampoline_end:\n"
  251. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  252. #elif ARCH(X86_64)
  253. // The trampoline preserves the current rax, pushes the signal code and
  254. // then calls the signal handler. We do this because, when interrupting a
  255. // blocking syscall, that syscall may return some special error code in eax;
  256. // This error code would likely be overwritten by the signal handler, so it's
  257. // necessary to preserve it here.
  258. asm(
  259. ".intel_syntax noprefix\n"
  260. ".globl asm_signal_trampoline\n"
  261. "asm_signal_trampoline:\n"
  262. "push rbp\n"
  263. "mov rbp, rsp\n"
  264. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  265. "sub rsp, 8\n" // align the stack to 16 bytes
  266. "mov rdi, [rbp+24]\n" // push the signal code
  267. "call [rbp+16]\n" // call the signal handler
  268. "add rsp, 8\n"
  269. "mov rax, %P0\n"
  270. "int 0x82\n" // sigreturn syscall
  271. ".globl asm_signal_trampoline_end\n"
  272. "asm_signal_trampoline_end:\n"
  273. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  274. #endif
  275. }
  276. extern "C" char const asm_signal_trampoline[];
  277. extern "C" char const asm_signal_trampoline_end[];
  278. void create_signal_trampoline()
  279. {
  280. // NOTE: We leak this region.
  281. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).release_value().leak_ptr();
  282. g_signal_trampoline_region->set_syscall_region(true);
  283. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  284. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  285. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  286. g_signal_trampoline_region->set_writable(false);
  287. g_signal_trampoline_region->remap();
  288. }
  289. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  290. {
  291. VERIFY(!is_dead());
  292. VERIFY(&Process::current() == this);
  293. if (out_of_memory) {
  294. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  295. } else {
  296. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  297. auto const* symbol = symbolicate_kernel_address(ip);
  298. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  299. } else {
  300. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  301. }
  302. dump_backtrace();
  303. }
  304. {
  305. ProtectedDataMutationScope scope { *this };
  306. m_protected_values.termination_signal = signal;
  307. }
  308. set_should_generate_coredump(!out_of_memory);
  309. address_space().dump_regions();
  310. VERIFY(is_user_process());
  311. die();
  312. // We can not return from here, as there is nowhere
  313. // to unwind to, so die right away.
  314. Thread::current()->die_if_needed();
  315. VERIFY_NOT_REACHED();
  316. }
  317. RefPtr<Process> Process::from_pid(ProcessID pid)
  318. {
  319. return all_instances().with([&](const auto& list) -> RefPtr<Process> {
  320. for (auto const& process : list) {
  321. if (process.pid() == pid)
  322. return &process;
  323. }
  324. return {};
  325. });
  326. }
  327. const Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) const
  328. {
  329. SpinlockLocker lock(m_fds_lock);
  330. if (m_fds_metadatas.size() <= i)
  331. return nullptr;
  332. if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid())
  333. return &metadata;
  334. return nullptr;
  335. }
  336. Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i)
  337. {
  338. SpinlockLocker lock(m_fds_lock);
  339. if (m_fds_metadatas.size() <= i)
  340. return nullptr;
  341. if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid())
  342. return &metadata;
  343. return nullptr;
  344. }
  345. const Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) const
  346. {
  347. SpinlockLocker lock(m_fds_lock);
  348. VERIFY(m_fds_metadatas[i].is_allocated());
  349. return m_fds_metadatas[i];
  350. }
  351. Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i)
  352. {
  353. SpinlockLocker lock(m_fds_lock);
  354. VERIFY(m_fds_metadatas[i].is_allocated());
  355. return m_fds_metadatas[i];
  356. }
  357. ErrorOr<NonnullRefPtr<OpenFileDescription>> Process::OpenFileDescriptions::open_file_description(int fd) const
  358. {
  359. SpinlockLocker lock(m_fds_lock);
  360. if (fd < 0)
  361. return EBADF;
  362. if (static_cast<size_t>(fd) >= m_fds_metadatas.size())
  363. return EBADF;
  364. RefPtr description = m_fds_metadatas[fd].description();
  365. if (!description)
  366. return EBADF;
  367. return description.release_nonnull();
  368. }
  369. void Process::OpenFileDescriptions::enumerate(Function<void(const OpenFileDescriptionAndFlags&)> callback) const
  370. {
  371. SpinlockLocker lock(m_fds_lock);
  372. for (auto const& file_description_metadata : m_fds_metadatas) {
  373. callback(file_description_metadata);
  374. }
  375. }
  376. void Process::OpenFileDescriptions::change_each(Function<void(OpenFileDescriptionAndFlags&)> callback)
  377. {
  378. SpinlockLocker lock(m_fds_lock);
  379. for (auto& file_description_metadata : m_fds_metadatas) {
  380. callback(file_description_metadata);
  381. }
  382. }
  383. size_t Process::OpenFileDescriptions::open_count() const
  384. {
  385. size_t count = 0;
  386. enumerate([&](auto& file_description_metadata) {
  387. if (file_description_metadata.is_valid())
  388. ++count;
  389. });
  390. return count;
  391. }
  392. ErrorOr<Process::ScopedDescriptionAllocation> Process::OpenFileDescriptions::allocate(int first_candidate_fd)
  393. {
  394. SpinlockLocker lock(m_fds_lock);
  395. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  396. if (!m_fds_metadatas[i].is_allocated()) {
  397. m_fds_metadatas[i].allocate();
  398. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  399. }
  400. }
  401. return EMFILE;
  402. }
  403. Time kgettimeofday()
  404. {
  405. return TimeManagement::now();
  406. }
  407. siginfo_t Process::wait_info() const
  408. {
  409. siginfo_t siginfo {};
  410. siginfo.si_signo = SIGCHLD;
  411. siginfo.si_pid = pid().value();
  412. siginfo.si_uid = uid().value();
  413. if (m_protected_values.termination_signal != 0) {
  414. siginfo.si_status = m_protected_values.termination_signal;
  415. siginfo.si_code = CLD_KILLED;
  416. } else {
  417. siginfo.si_status = m_protected_values.termination_status;
  418. siginfo.si_code = CLD_EXITED;
  419. }
  420. return siginfo;
  421. }
  422. Custody& Process::current_directory()
  423. {
  424. if (!m_cwd)
  425. m_cwd = VirtualFileSystem::the().root_custody();
  426. return *m_cwd;
  427. }
  428. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length)
  429. {
  430. if (path_length == 0)
  431. return EINVAL;
  432. if (path_length > PATH_MAX)
  433. return ENAMETOOLONG;
  434. return try_copy_kstring_from_user(user_path, path_length);
  435. }
  436. ErrorOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path)
  437. {
  438. Userspace<char const*> path_characters((FlatPtr)path.characters);
  439. return get_syscall_path_argument(path_characters, path.length);
  440. }
  441. ErrorOr<void> Process::dump_core()
  442. {
  443. VERIFY(is_dumpable());
  444. VERIFY(should_generate_coredump());
  445. dbgln("Generating coredump for pid: {}", pid().value());
  446. auto coredump_path = TRY(KString::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds()));
  447. auto coredump = TRY(Coredump::try_create(*this, coredump_path->view()));
  448. return coredump->write();
  449. }
  450. ErrorOr<void> Process::dump_perfcore()
  451. {
  452. VERIFY(is_dumpable());
  453. VERIFY(m_perf_event_buffer);
  454. dbgln("Generating perfcore for pid: {}", pid().value());
  455. // Try to generate a filename which isn't already used.
  456. auto base_filename = TRY(KString::formatted("{}_{}", name(), pid().value()));
  457. auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename));
  458. RefPtr<OpenFileDescription> description;
  459. for (size_t attempt = 1; attempt <= 10; ++attempt) {
  460. auto description_or_error = VirtualFileSystem::the().open(perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 });
  461. if (!description_or_error.is_error()) {
  462. description = description_or_error.release_value();
  463. break;
  464. }
  465. perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt));
  466. }
  467. if (!description) {
  468. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  469. return EEXIST;
  470. }
  471. auto builder = TRY(KBufferBuilder::try_create());
  472. TRY(m_perf_event_buffer->to_json(builder));
  473. auto json = builder.build();
  474. if (!json) {
  475. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  476. return ENOMEM;
  477. }
  478. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  479. TRY(description->write(json_buffer, json->size()));
  480. dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename);
  481. return {};
  482. }
  483. void Process::finalize()
  484. {
  485. VERIFY(Thread::current() == g_finalizer);
  486. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  487. if (veil_state() == VeilState::Dropped)
  488. dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", name());
  489. if (is_dumpable()) {
  490. if (m_should_generate_coredump) {
  491. auto result = dump_core();
  492. if (result.is_error()) {
  493. critical_dmesgln("Failed to write coredump: {}", result.error());
  494. }
  495. }
  496. if (m_perf_event_buffer) {
  497. auto result = dump_perfcore();
  498. if (result.is_error())
  499. critical_dmesgln("Failed to write perfcore: {}", result.error());
  500. TimeManagement::the().disable_profile_timer();
  501. }
  502. }
  503. m_threads_for_coredump.clear();
  504. if (m_alarm_timer)
  505. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  506. m_fds.clear();
  507. m_tty = nullptr;
  508. m_executable = nullptr;
  509. m_cwd = nullptr;
  510. m_arguments.clear();
  511. m_environment.clear();
  512. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  513. {
  514. // FIXME: PID/TID BUG
  515. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  516. if ((parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT)
  517. parent_thread->send_signal(SIGCHLD, this);
  518. }
  519. }
  520. if (!!ppid()) {
  521. if (auto parent = Process::from_pid(ppid())) {
  522. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  523. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  524. }
  525. }
  526. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  527. m_space->remove_all_regions({});
  528. VERIFY(ref_count() > 0);
  529. // WaitBlockerSet::finalize will be in charge of dropping the last
  530. // reference if there are still waiters around, or whenever the last
  531. // waitable states are consumed. Unless there is no parent around
  532. // anymore, in which case we'll just drop it right away.
  533. m_wait_blocker_set.finalize();
  534. }
  535. void Process::disowned_by_waiter(Process& process)
  536. {
  537. m_wait_blocker_set.disowned_by_waiter(process);
  538. }
  539. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  540. {
  541. RefPtr<Process> waiter_process;
  542. if (auto* my_tracer = tracer())
  543. waiter_process = Process::from_pid(my_tracer->tracer_pid());
  544. else
  545. waiter_process = Process::from_pid(ppid());
  546. if (waiter_process)
  547. waiter_process->m_wait_blocker_set.unblock(*this, flags, signal);
  548. }
  549. void Process::die()
  550. {
  551. auto expected = State::Running;
  552. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  553. // It's possible that another thread calls this at almost the same time
  554. // as we can't always instantly kill other threads (they may be blocked)
  555. // So if we already were called then other threads should stop running
  556. // momentarily and we only really need to service the first thread
  557. return;
  558. }
  559. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  560. // getting an EOF when the last process using the slave PTY dies.
  561. // If the master PTY owner relies on an EOF to know when to wait() on a
  562. // slave owner, we have to allow the PTY pair to be torn down.
  563. m_tty = nullptr;
  564. VERIFY(m_threads_for_coredump.is_empty());
  565. for_each_thread([&](auto& thread) {
  566. auto result = m_threads_for_coredump.try_append(thread);
  567. if (result.is_error())
  568. dbgln("Failed to add thread {} to coredump due to OOM", thread.tid());
  569. });
  570. all_instances().with([&](const auto& list) {
  571. for (auto it = list.begin(); it != list.end();) {
  572. auto& process = *it;
  573. ++it;
  574. if (process.has_tracee_thread(pid())) {
  575. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  576. process.stop_tracing();
  577. auto err = process.send_signal(SIGSTOP, this);
  578. if (err.is_error())
  579. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  580. }
  581. }
  582. });
  583. kill_all_threads();
  584. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  585. KCOVDevice::free_process();
  586. #endif
  587. }
  588. void Process::terminate_due_to_signal(u8 signal)
  589. {
  590. VERIFY_INTERRUPTS_DISABLED();
  591. VERIFY(signal < 32);
  592. VERIFY(&Process::current() == this);
  593. dbgln("Terminating {} due to signal {}", *this, signal);
  594. {
  595. ProtectedDataMutationScope scope { *this };
  596. m_protected_values.termination_status = 0;
  597. m_protected_values.termination_signal = signal;
  598. }
  599. die();
  600. }
  601. ErrorOr<void> Process::send_signal(u8 signal, Process* sender)
  602. {
  603. // Try to send it to the "obvious" main thread:
  604. auto receiver_thread = Thread::from_tid(pid().value());
  605. // If the main thread has died, there may still be other threads:
  606. if (!receiver_thread) {
  607. // The first one should be good enough.
  608. // Neither kill(2) nor kill(3) specify any selection procedure.
  609. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  610. receiver_thread = &thread;
  611. return IterationDecision::Break;
  612. });
  613. }
  614. if (receiver_thread) {
  615. receiver_thread->send_signal(signal, sender);
  616. return {};
  617. }
  618. return ESRCH;
  619. }
  620. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr<KString> name, u32 affinity, bool joinable)
  621. {
  622. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  623. // FIXME: Do something with guard pages?
  624. auto thread_or_error = Thread::try_create(*this);
  625. if (thread_or_error.is_error())
  626. return {};
  627. auto thread = thread_or_error.release_value();
  628. thread->set_name(move(name));
  629. thread->set_affinity(affinity);
  630. thread->set_priority(priority);
  631. if (!joinable)
  632. thread->detach();
  633. auto& regs = thread->regs();
  634. regs.set_ip((FlatPtr)entry);
  635. regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register
  636. SpinlockLocker lock(g_scheduler_lock);
  637. thread->set_state(Thread::State::Runnable);
  638. return thread;
  639. }
  640. void Process::OpenFileDescriptionAndFlags::clear()
  641. {
  642. // FIXME: Verify Process::m_fds_lock is locked!
  643. m_description = nullptr;
  644. m_flags = 0;
  645. }
  646. void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr<OpenFileDescription>&& description, u32 flags)
  647. {
  648. // FIXME: Verify Process::m_fds_lock is locked!
  649. m_description = move(description);
  650. m_flags = flags;
  651. }
  652. void Process::set_tty(TTY* tty)
  653. {
  654. m_tty = tty;
  655. }
  656. ErrorOr<void> Process::start_tracing_from(ProcessID tracer)
  657. {
  658. m_tracer = TRY(ThreadTracer::try_create(tracer));
  659. return {};
  660. }
  661. void Process::stop_tracing()
  662. {
  663. m_tracer = nullptr;
  664. }
  665. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  666. {
  667. VERIFY(m_tracer.ptr());
  668. m_tracer->set_regs(regs);
  669. thread.send_urgent_signal_to_self(SIGTRAP);
  670. }
  671. bool Process::create_perf_events_buffer_if_needed()
  672. {
  673. if (m_perf_event_buffer)
  674. return true;
  675. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  676. if (!m_perf_event_buffer)
  677. return false;
  678. return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error();
  679. }
  680. void Process::delete_perf_events_buffer()
  681. {
  682. if (m_perf_event_buffer)
  683. m_perf_event_buffer = nullptr;
  684. }
  685. bool Process::remove_thread(Thread& thread)
  686. {
  687. ProtectedDataMutationScope scope { *this };
  688. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  689. VERIFY(thread_cnt_before != 0);
  690. thread_list().with([&](auto& thread_list) {
  691. thread_list.remove(thread);
  692. });
  693. return thread_cnt_before == 1;
  694. }
  695. bool Process::add_thread(Thread& thread)
  696. {
  697. ProtectedDataMutationScope scope { *this };
  698. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  699. thread_list().with([&](auto& thread_list) {
  700. thread_list.append(thread);
  701. });
  702. return is_first;
  703. }
  704. void Process::set_dumpable(bool dumpable)
  705. {
  706. if (dumpable == m_protected_values.dumpable)
  707. return;
  708. ProtectedDataMutationScope scope { *this };
  709. m_protected_values.dumpable = dumpable;
  710. }
  711. ErrorOr<void> Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  712. {
  713. // Write it into the first available property slot.
  714. for (auto& slot : m_coredump_properties) {
  715. if (slot.key)
  716. continue;
  717. slot.key = move(key);
  718. slot.value = move(value);
  719. return {};
  720. }
  721. return ENOBUFS;
  722. }
  723. ErrorOr<void> Process::try_set_coredump_property(StringView key, StringView value)
  724. {
  725. auto key_kstring = TRY(KString::try_create(key));
  726. auto value_kstring = TRY(KString::try_create(value));
  727. return set_coredump_property(move(key_kstring), move(value_kstring));
  728. };
  729. static constexpr StringView to_string(Pledge promise)
  730. {
  731. #define __ENUMERATE_PLEDGE_PROMISE(x) \
  732. case Pledge::x: \
  733. return #x;
  734. switch (promise) {
  735. ENUMERATE_PLEDGE_PROMISES
  736. }
  737. #undef __ENUMERATE_PLEDGE_PROMISE
  738. VERIFY_NOT_REACHED();
  739. }
  740. ErrorOr<void> Process::require_no_promises() const
  741. {
  742. if (!has_promises())
  743. return {};
  744. dbgln("Has made a promise");
  745. Thread::current()->set_promise_violation_pending(true);
  746. return EPROMISEVIOLATION;
  747. }
  748. ErrorOr<void> Process::require_promise(Pledge promise)
  749. {
  750. if (!has_promises())
  751. return {};
  752. if (has_promised(promise))
  753. return {};
  754. dbgln("Has not pledged {}", to_string(promise));
  755. Thread::current()->set_promise_violation_pending(true);
  756. (void)try_set_coredump_property("pledge_violation"sv, to_string(promise));
  757. return EPROMISEVIOLATION;
  758. }
  759. }