MemoryManager.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. #include <Kernel/VM/PurgeableVMObject.h>
  13. //#define MM_DEBUG
  14. //#define PAGE_FAULT_DEBUG
  15. static MemoryManager* s_the;
  16. MemoryManager& MM
  17. {
  18. return *s_the;
  19. }
  20. MemoryManager::MemoryManager()
  21. {
  22. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  23. parse_memory_map();
  24. x86_enable_pae();
  25. x86_enable_pge();
  26. x86_enable_smep();
  27. x86_enable_smap();
  28. x86_enable_nx();
  29. x86_enable_wp();
  30. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  31. setup_low_1mb();
  32. protect_kernel_image();
  33. }
  34. MemoryManager::~MemoryManager()
  35. {
  36. }
  37. void MemoryManager::protect_kernel_image()
  38. {
  39. // Disable writing to the kernel text and rodata segments.
  40. extern u32 start_of_kernel_text;
  41. extern u32 start_of_kernel_data;
  42. for (size_t i = (u32)&start_of_kernel_text; i < (u32)&start_of_kernel_data; i += PAGE_SIZE) {
  43. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  44. pte.set_writable(false);
  45. }
  46. if (g_cpu_supports_nx) {
  47. // Disable execution of the kernel data and bss segments.
  48. extern u32 end_of_kernel_bss;
  49. for (size_t i = (u32)&start_of_kernel_data; i < (u32)&end_of_kernel_bss; i += PAGE_SIZE) {
  50. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  51. pte.set_execute_disabled(true);
  52. }
  53. }
  54. }
  55. void MemoryManager::setup_low_1mb()
  56. {
  57. m_low_page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  58. auto* pd_zero = quickmap_pd(kernel_page_directory(), 0);
  59. pd_zero[1].set_present(false);
  60. pd_zero[2].set_present(false);
  61. pd_zero[3].set_present(false);
  62. auto& pde_zero = pd_zero[0];
  63. pde_zero.set_page_table_base(m_low_page_table->paddr().get());
  64. pde_zero.set_present(true);
  65. pde_zero.set_huge(false);
  66. pde_zero.set_writable(true);
  67. pde_zero.set_user_allowed(false);
  68. if (g_cpu_supports_nx)
  69. pde_zero.set_execute_disabled(true);
  70. for (u32 offset = 0; offset < (2 * MB); offset += PAGE_SIZE) {
  71. auto& page_table_page = m_low_page_table;
  72. auto& pte = quickmap_pt(page_table_page->paddr())[offset / PAGE_SIZE];
  73. pte.set_physical_page_base(offset);
  74. pte.set_user_allowed(false);
  75. pte.set_present(offset != 0);
  76. pte.set_writable(offset < (1 * MB));
  77. }
  78. }
  79. void MemoryManager::parse_memory_map()
  80. {
  81. RefPtr<PhysicalRegion> region;
  82. bool region_is_super = false;
  83. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  84. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  85. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  86. (u32)(mmap->addr >> 32),
  87. (u32)(mmap->addr & 0xffffffff),
  88. (u32)(mmap->len >> 32),
  89. (u32)(mmap->len & 0xffffffff),
  90. (u32)mmap->type);
  91. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  92. continue;
  93. // FIXME: Maybe make use of stuff below the 1MB mark?
  94. if (mmap->addr < (1 * MB))
  95. continue;
  96. if ((mmap->addr + mmap->len) > 0xffffffff)
  97. continue;
  98. auto diff = (u32)mmap->addr % PAGE_SIZE;
  99. if (diff != 0) {
  100. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  101. diff = PAGE_SIZE - diff;
  102. mmap->addr += diff;
  103. mmap->len -= diff;
  104. }
  105. if ((mmap->len % PAGE_SIZE) != 0) {
  106. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  107. mmap->len -= mmap->len % PAGE_SIZE;
  108. }
  109. if (mmap->len < PAGE_SIZE) {
  110. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  111. continue;
  112. }
  113. #ifdef MM_DEBUG
  114. kprintf("MM: considering memory at %p - %p\n",
  115. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  116. #endif
  117. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  118. auto addr = PhysicalAddress(page_base);
  119. if (page_base < 7 * MB) {
  120. // nothing
  121. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  122. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  123. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  124. region = m_super_physical_regions.last();
  125. region_is_super = true;
  126. } else {
  127. region->expand(region->lower(), addr);
  128. }
  129. } else {
  130. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  131. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  132. region = m_user_physical_regions.last();
  133. region_is_super = false;
  134. } else {
  135. region->expand(region->lower(), addr);
  136. }
  137. }
  138. }
  139. }
  140. for (auto& region : m_super_physical_regions)
  141. m_super_physical_pages += region.finalize_capacity();
  142. for (auto& region : m_user_physical_regions)
  143. m_user_physical_pages += region.finalize_capacity();
  144. }
  145. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  146. {
  147. ASSERT_INTERRUPTS_DISABLED();
  148. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  149. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  150. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  151. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  152. PageDirectoryEntry& pde = pd[page_directory_index];
  153. if (!pde.is_present()) {
  154. #ifdef MM_DEBUG
  155. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  156. #endif
  157. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  158. #ifdef MM_DEBUG
  159. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  160. &page_directory,
  161. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  162. page_directory.cr3(),
  163. page_directory_index,
  164. vaddr.get(),
  165. page_table->paddr().get());
  166. #endif
  167. pde.set_page_table_base(page_table->paddr().get());
  168. pde.set_user_allowed(true);
  169. pde.set_present(true);
  170. pde.set_writable(true);
  171. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  172. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  173. }
  174. return quickmap_pt(PhysicalAddress((u32)pde.page_table_base()))[page_table_index];
  175. }
  176. void MemoryManager::initialize()
  177. {
  178. s_the = new MemoryManager;
  179. }
  180. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  181. {
  182. if (vaddr.get() < 0xc0000000)
  183. return nullptr;
  184. for (auto& region : MM.m_kernel_regions) {
  185. if (region.contains(vaddr))
  186. return &region;
  187. }
  188. return nullptr;
  189. }
  190. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  191. {
  192. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  193. for (auto& region : process.m_regions) {
  194. if (region.contains(vaddr))
  195. return &region;
  196. }
  197. dbg() << process << " Couldn't find user region for " << vaddr;
  198. return nullptr;
  199. }
  200. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  201. {
  202. if (auto* region = kernel_region_from_vaddr(vaddr))
  203. return region;
  204. return user_region_from_vaddr(process, vaddr);
  205. }
  206. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  207. {
  208. if (auto* region = kernel_region_from_vaddr(vaddr))
  209. return region;
  210. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  211. }
  212. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  213. {
  214. if (auto* region = kernel_region_from_vaddr(vaddr))
  215. return region;
  216. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  217. if (!page_directory)
  218. return nullptr;
  219. ASSERT(page_directory->process());
  220. return user_region_from_vaddr(*page_directory->process(), vaddr);
  221. }
  222. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  223. {
  224. ASSERT_INTERRUPTS_DISABLED();
  225. ASSERT(current);
  226. #ifdef PAGE_FAULT_DEBUG
  227. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  228. #endif
  229. auto* region = region_from_vaddr(fault.vaddr());
  230. if (!region) {
  231. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  232. return PageFaultResponse::ShouldCrash;
  233. }
  234. return region->handle_fault(fault);
  235. }
  236. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  237. {
  238. InterruptDisabler disabler;
  239. ASSERT(!(size % PAGE_SIZE));
  240. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  241. ASSERT(range.is_valid());
  242. OwnPtr<Region> region;
  243. if (user_accessible)
  244. region = Region::create_user_accessible(range, name, access, cacheable);
  245. else
  246. region = Region::create_kernel_only(range, name, access, cacheable);
  247. region->set_page_directory(kernel_page_directory());
  248. // FIXME: It would be cool if these could zero-fill on demand instead.
  249. if (should_commit)
  250. region->commit();
  251. return region;
  252. }
  253. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  254. {
  255. InterruptDisabler disabler;
  256. ASSERT(!(size % PAGE_SIZE));
  257. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  258. ASSERT(range.is_valid());
  259. OwnPtr<Region> region;
  260. if (user_accessible)
  261. region = Region::create_user_accessible(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  262. else
  263. region = Region::create_kernel_only(range, AnonymousVMObject::create_for_physical_range(paddr, size), 0, name, access, cacheable);
  264. region->map(kernel_page_directory());
  265. return region;
  266. }
  267. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  268. {
  269. return allocate_kernel_region(size, name, access, true, true, cacheable);
  270. }
  271. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  272. {
  273. InterruptDisabler disabler;
  274. ASSERT(!(size % PAGE_SIZE));
  275. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  276. ASSERT(range.is_valid());
  277. OwnPtr<Region> region;
  278. if (user_accessible)
  279. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  280. else
  281. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  282. region->map(kernel_page_directory());
  283. return region;
  284. }
  285. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  286. {
  287. for (auto& region : m_user_physical_regions) {
  288. if (!region.contains(page)) {
  289. kprintf(
  290. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  291. page.paddr().get(), region.lower().get(), region.upper().get());
  292. continue;
  293. }
  294. region.return_page(move(page));
  295. --m_user_physical_pages_used;
  296. return;
  297. }
  298. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  299. ASSERT_NOT_REACHED();
  300. }
  301. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  302. {
  303. RefPtr<PhysicalPage> page;
  304. for (auto& region : m_user_physical_regions) {
  305. page = region.take_free_page(false);
  306. if (!page.is_null())
  307. break;
  308. }
  309. return page;
  310. }
  311. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  312. {
  313. InterruptDisabler disabler;
  314. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  315. if (!page) {
  316. if (m_user_physical_regions.is_empty()) {
  317. kprintf("MM: no user physical regions available (?)\n");
  318. }
  319. for_each_vmobject([&](auto& vmobject) {
  320. if (vmobject.is_purgeable()) {
  321. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  322. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  323. if (purged_page_count) {
  324. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  325. page = find_free_user_physical_page();
  326. ASSERT(page);
  327. return IterationDecision::Break;
  328. }
  329. }
  330. return IterationDecision::Continue;
  331. });
  332. if (!page) {
  333. kprintf("MM: no user physical pages available\n");
  334. ASSERT_NOT_REACHED();
  335. return {};
  336. }
  337. }
  338. #ifdef MM_DEBUG
  339. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  340. #endif
  341. if (should_zero_fill == ShouldZeroFill::Yes) {
  342. auto* ptr = (u32*)quickmap_page(*page);
  343. memset(ptr, 0, PAGE_SIZE);
  344. unquickmap_page();
  345. }
  346. ++m_user_physical_pages_used;
  347. return page;
  348. }
  349. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  350. {
  351. for (auto& region : m_super_physical_regions) {
  352. if (!region.contains(page)) {
  353. kprintf(
  354. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  355. page.paddr().get(), region.lower().get(), region.upper().get());
  356. continue;
  357. }
  358. region.return_page(move(page));
  359. --m_super_physical_pages_used;
  360. return;
  361. }
  362. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  363. ASSERT_NOT_REACHED();
  364. }
  365. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  366. {
  367. InterruptDisabler disabler;
  368. RefPtr<PhysicalPage> page;
  369. for (auto& region : m_super_physical_regions) {
  370. page = region.take_free_page(true);
  371. if (page.is_null())
  372. continue;
  373. }
  374. if (!page) {
  375. if (m_super_physical_regions.is_empty()) {
  376. kprintf("MM: no super physical regions available (?)\n");
  377. }
  378. kprintf("MM: no super physical pages available\n");
  379. ASSERT_NOT_REACHED();
  380. return {};
  381. }
  382. #ifdef MM_DEBUG
  383. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  384. #endif
  385. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  386. ++m_super_physical_pages_used;
  387. return page;
  388. }
  389. void MemoryManager::enter_process_paging_scope(Process& process)
  390. {
  391. ASSERT(current);
  392. InterruptDisabler disabler;
  393. current->tss().cr3 = process.page_directory().cr3();
  394. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  395. : "memory");
  396. }
  397. void MemoryManager::flush_entire_tlb()
  398. {
  399. asm volatile(
  400. "mov %%cr3, %%eax\n"
  401. "mov %%eax, %%cr3\n" ::
  402. : "%eax", "memory");
  403. }
  404. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  405. {
  406. #ifdef MM_DEBUG
  407. dbgprintf("MM: Flush page V%p\n", vaddr.get());
  408. #endif
  409. asm volatile("invlpg %0"
  410. :
  411. : "m"(*(char*)vaddr.get())
  412. : "memory");
  413. }
  414. extern "C" PageTableEntry boot_pd3_pde1023_pt[1024];
  415. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  416. {
  417. auto& pte = boot_pd3_pde1023_pt[4];
  418. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  419. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  420. #ifdef MM_DEBUG
  421. dbgprintf("quickmap_pd: Mapping P%p at 0xffe04000 in pte @ %p\n", directory.m_directory_pages[pdpt_index]->paddr().as_ptr(), &pte);
  422. #endif
  423. pte.set_physical_page_base(pd_paddr.get());
  424. pte.set_present(true);
  425. pte.set_writable(true);
  426. pte.set_user_allowed(false);
  427. flush_tlb(VirtualAddress(0xffe04000));
  428. }
  429. return (PageDirectoryEntry*)0xffe04000;
  430. }
  431. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  432. {
  433. auto& pte = boot_pd3_pde1023_pt[8];
  434. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  435. #ifdef MM_DEBUG
  436. dbgprintf("quickmap_pt: Mapping P%p at 0xffe08000 in pte @ %p\n", pt_paddr.as_ptr(), &pte);
  437. #endif
  438. pte.set_physical_page_base(pt_paddr.get());
  439. pte.set_present(true);
  440. pte.set_writable(true);
  441. pte.set_user_allowed(false);
  442. flush_tlb(VirtualAddress(0xffe08000));
  443. }
  444. return (PageTableEntry*)0xffe08000;
  445. }
  446. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  447. {
  448. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  449. pte.set_physical_page_base(paddr.get());
  450. pte.set_present(true);
  451. pte.set_writable(true);
  452. pte.set_user_allowed(false);
  453. pte.set_cache_disabled(cache_disabled);
  454. flush_tlb(vaddr);
  455. }
  456. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  457. {
  458. ASSERT_INTERRUPTS_DISABLED();
  459. ASSERT(!m_quickmap_in_use);
  460. m_quickmap_in_use = true;
  461. auto& pte = boot_pd3_pde1023_pt[0];
  462. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  463. #ifdef MM_DEBUG
  464. dbgprintf("quickmap_page: Mapping P%p at 0xffe00000 in pte @ %p\n", physical_page.paddr().as_ptr(), &pte);
  465. #endif
  466. pte.set_physical_page_base(physical_page.paddr().get());
  467. pte.set_present(true);
  468. pte.set_writable(true);
  469. pte.set_user_allowed(false);
  470. flush_tlb(VirtualAddress(0xffe00000));
  471. }
  472. return (u8*)0xffe00000;
  473. }
  474. void MemoryManager::unquickmap_page()
  475. {
  476. ASSERT_INTERRUPTS_DISABLED();
  477. ASSERT(m_quickmap_in_use);
  478. auto& pte = boot_pd3_pde1023_pt[0];
  479. pte.set_physical_page_base(0);
  480. pte.set_present(false);
  481. flush_tlb(VirtualAddress(0xffe00000));
  482. m_quickmap_in_use = false;
  483. }
  484. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  485. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  486. {
  487. ASSERT(size);
  488. VirtualAddress vaddr = base_vaddr.page_base();
  489. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  490. if (end_vaddr < vaddr) {
  491. dbg() << *current << " Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  492. return false;
  493. }
  494. const Region* region = nullptr;
  495. while (vaddr <= end_vaddr) {
  496. if (!region || !region->contains(vaddr)) {
  497. if (space == AccessSpace::Kernel)
  498. region = kernel_region_from_vaddr(vaddr);
  499. if (!region || !region->contains(vaddr))
  500. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  501. if (!region
  502. || (space == AccessSpace::User && !region->is_user_accessible())
  503. || (access_type == AccessType::Read && !region->is_readable())
  504. || (access_type == AccessType::Write && !region->is_writable())) {
  505. return false;
  506. }
  507. }
  508. vaddr = vaddr.offset(PAGE_SIZE);
  509. }
  510. return true;
  511. }
  512. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  513. {
  514. if (!is_user_address(vaddr))
  515. return false;
  516. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  517. return region && region->is_user_accessible() && region->is_stack();
  518. }
  519. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  520. {
  521. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  522. }
  523. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  524. {
  525. if (!is_user_address(vaddr))
  526. return false;
  527. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  528. }
  529. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  530. {
  531. if (!is_user_address(vaddr))
  532. return false;
  533. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  534. }
  535. void MemoryManager::register_vmobject(VMObject& vmobject)
  536. {
  537. InterruptDisabler disabler;
  538. m_vmobjects.append(&vmobject);
  539. }
  540. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  541. {
  542. InterruptDisabler disabler;
  543. m_vmobjects.remove(&vmobject);
  544. }
  545. void MemoryManager::register_region(Region& region)
  546. {
  547. InterruptDisabler disabler;
  548. if (region.vaddr().get() >= 0xc0000000)
  549. m_kernel_regions.append(&region);
  550. else
  551. m_user_regions.append(&region);
  552. }
  553. void MemoryManager::unregister_region(Region& region)
  554. {
  555. InterruptDisabler disabler;
  556. if (region.vaddr().get() >= 0xc0000000)
  557. m_kernel_regions.remove(&region);
  558. else
  559. m_user_regions.remove(&region);
  560. }
  561. void MemoryManager::dump_kernel_regions()
  562. {
  563. kprintf("Kernel regions:\n");
  564. kprintf("BEGIN END SIZE ACCESS NAME\n");
  565. for (auto& region : MM.m_kernel_regions) {
  566. kprintf("%08x -- %08x %08x %c%c%c%c%c%c %s\n",
  567. region.vaddr().get(),
  568. region.vaddr().offset(region.size() - 1).get(),
  569. region.size(),
  570. region.is_readable() ? 'R' : ' ',
  571. region.is_writable() ? 'W' : ' ',
  572. region.is_executable() ? 'X' : ' ',
  573. region.is_shared() ? 'S' : ' ',
  574. region.is_stack() ? 'T' : ' ',
  575. region.vmobject().is_purgeable() ? 'P' : ' ',
  576. region.name().characters());
  577. }
  578. }
  579. ProcessPagingScope::ProcessPagingScope(Process& process)
  580. {
  581. ASSERT(current);
  582. MM.enter_process_paging_scope(process);
  583. }
  584. ProcessPagingScope::~ProcessPagingScope()
  585. {
  586. MM.enter_process_paging_scope(current->process());
  587. }