AnonymousVMObject.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <Kernel/Arch/SmapDisabler.h>
  7. #include <Kernel/Arch/x86/SafeMem.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/Memory/AnonymousVMObject.h>
  10. #include <Kernel/Memory/MemoryManager.h>
  11. #include <Kernel/Memory/PhysicalPage.h>
  12. #include <Kernel/Process.h>
  13. namespace Kernel::Memory {
  14. ErrorOr<NonnullRefPtr<VMObject>> AnonymousVMObject::try_clone()
  15. {
  16. // We need to acquire our lock so we copy a sane state
  17. SpinlockLocker lock(m_lock);
  18. if (is_purgeable() && is_volatile()) {
  19. // If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
  20. // object, effectively "pre-purging" it in the child process.
  21. auto clone = TRY(try_create_purgeable_with_size(size(), AllocationStrategy::None));
  22. clone->m_volatile = true;
  23. return clone;
  24. }
  25. // We're the parent. Since we're about to become COW we need to
  26. // commit the number of pages that we need to potentially allocate
  27. // so that the parent is still guaranteed to be able to have all
  28. // non-volatile memory available.
  29. size_t new_cow_pages_needed = page_count();
  30. dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
  31. auto committed_pages = TRY(MM.commit_user_physical_pages(new_cow_pages_needed));
  32. // Create or replace the committed cow pages. When cloning a previously
  33. // cloned vmobject, we want to essentially "fork", leaving us and the
  34. // new clone with one set of shared committed cow pages, and the original
  35. // one would keep the one it still has. This ensures that the original
  36. // one and this one, as well as the clone have sufficient resources
  37. // to cow all pages as needed
  38. auto new_shared_committed_cow_pages = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) SharedCommittedCowPages(move(committed_pages))));
  39. auto new_physical_pages = TRY(this->try_clone_physical_pages());
  40. auto clone = TRY(try_create_with_shared_cow(*this, *new_shared_committed_cow_pages, move(new_physical_pages)));
  41. // Both original and clone become COW. So create a COW map for ourselves
  42. // or reset all pages to be copied again if we were previously cloned
  43. TRY(ensure_or_reset_cow_map());
  44. m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);
  45. if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
  46. // The parent vmobject didn't use up all committed pages. When
  47. // cloning (fork) we will overcommit. For this purpose we drop all
  48. // lazy-commit references and replace them with shared zero pages.
  49. for (size_t i = 0; i < page_count(); i++) {
  50. auto& page = clone->m_physical_pages[i];
  51. if (page && page->is_lazy_committed_page()) {
  52. page = MM.shared_zero_page();
  53. }
  54. }
  55. }
  56. return clone;
  57. }
  58. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
  59. {
  60. Optional<CommittedPhysicalPageSet> committed_pages;
  61. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  62. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  63. }
  64. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  65. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages), strategy, move(committed_pages)));
  66. }
  67. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
  68. {
  69. auto contiguous_physical_pages = TRY(MM.allocate_contiguous_user_physical_pages(size));
  70. auto new_physical_pages = TRY(FixedArray<RefPtr<PhysicalPage>>::try_create(contiguous_physical_pages.span()));
  71. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages)));
  72. }
  73. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
  74. {
  75. Optional<CommittedPhysicalPageSet> committed_pages;
  76. if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
  77. committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
  78. }
  79. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  80. auto vmobject = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages), strategy, move(committed_pages))));
  81. vmobject->m_purgeable = true;
  82. return vmobject;
  83. }
  84. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
  85. {
  86. auto new_physical_pages = TRY(FixedArray<RefPtr<PhysicalPage>>::try_create(physical_pages));
  87. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(move(new_physical_pages)));
  88. }
  89. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
  90. {
  91. if (paddr.offset(size) < paddr) {
  92. dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
  93. // Since we can't wrap around yet, let's pretend to OOM.
  94. return ENOMEM;
  95. }
  96. auto new_physical_pages = TRY(VMObject::try_create_physical_pages(size));
  97. return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(paddr, move(new_physical_pages)));
  98. }
  99. ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_shared_cow(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages, FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  100. {
  101. auto vmobject = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(other, move(shared_committed_cow_pages), move(new_physical_pages))));
  102. TRY(vmobject->ensure_cow_map());
  103. return vmobject;
  104. }
  105. AnonymousVMObject::AnonymousVMObject(FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
  106. : VMObject(move(new_physical_pages))
  107. , m_unused_committed_pages(move(committed_pages))
  108. {
  109. if (strategy == AllocationStrategy::AllocateNow) {
  110. // Allocate all pages right now. We know we can get all because we committed the amount needed
  111. for (size_t i = 0; i < page_count(); ++i)
  112. physical_pages()[i] = m_unused_committed_pages->take_one();
  113. } else {
  114. auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
  115. for (size_t i = 0; i < page_count(); ++i)
  116. physical_pages()[i] = initial_page;
  117. }
  118. }
  119. AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  120. : VMObject(move(new_physical_pages))
  121. {
  122. VERIFY(paddr.page_base() == paddr);
  123. for (size_t i = 0; i < page_count(); ++i)
  124. physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
  125. }
  126. AnonymousVMObject::AnonymousVMObject(FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  127. : VMObject(move(new_physical_pages))
  128. {
  129. }
  130. AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages, FixedArray<RefPtr<PhysicalPage>>&& new_physical_pages)
  131. : VMObject(move(new_physical_pages))
  132. , m_shared_committed_cow_pages(move(shared_committed_cow_pages))
  133. , m_purgeable(other.m_purgeable)
  134. {
  135. }
  136. AnonymousVMObject::~AnonymousVMObject() = default;
  137. size_t AnonymousVMObject::purge()
  138. {
  139. SpinlockLocker lock(m_lock);
  140. if (!is_purgeable() || !is_volatile())
  141. return 0;
  142. size_t total_pages_purged = 0;
  143. for (auto& page : m_physical_pages) {
  144. VERIFY(page);
  145. if (page->is_shared_zero_page())
  146. continue;
  147. page = MM.shared_zero_page();
  148. ++total_pages_purged;
  149. }
  150. m_was_purged = true;
  151. for_each_region([](Region& region) {
  152. region.remap();
  153. });
  154. return total_pages_purged;
  155. }
  156. ErrorOr<void> AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
  157. {
  158. VERIFY(is_purgeable());
  159. SpinlockLocker locker(m_lock);
  160. was_purged = m_was_purged;
  161. if (m_volatile == is_volatile)
  162. return {};
  163. if (is_volatile) {
  164. // When a VMObject is made volatile, it gives up all of its committed memory.
  165. // Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
  166. for (auto& page : m_physical_pages) {
  167. if (page && page->is_lazy_committed_page())
  168. page = MM.shared_zero_page();
  169. }
  170. m_unused_committed_pages = {};
  171. m_shared_committed_cow_pages = nullptr;
  172. if (!m_cow_map.is_null())
  173. m_cow_map = {};
  174. m_volatile = true;
  175. m_was_purged = false;
  176. for_each_region([&](auto& region) { region.remap(); });
  177. return {};
  178. }
  179. // When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
  180. // If that fails, we return false to indicate that memory allocation failed.
  181. size_t committed_pages_needed = 0;
  182. for (auto& page : m_physical_pages) {
  183. VERIFY(page);
  184. if (page->is_shared_zero_page())
  185. ++committed_pages_needed;
  186. }
  187. if (!committed_pages_needed) {
  188. m_volatile = false;
  189. return {};
  190. }
  191. m_unused_committed_pages = TRY(MM.commit_user_physical_pages(committed_pages_needed));
  192. for (auto& page : m_physical_pages) {
  193. if (page->is_shared_zero_page())
  194. page = MM.lazy_committed_page();
  195. }
  196. m_volatile = false;
  197. m_was_purged = false;
  198. for_each_region([&](auto& region) { region.remap(); });
  199. return {};
  200. }
  201. NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
  202. {
  203. return m_unused_committed_pages->take_one();
  204. }
  205. ErrorOr<void> AnonymousVMObject::ensure_cow_map()
  206. {
  207. if (m_cow_map.is_null())
  208. m_cow_map = TRY(Bitmap::try_create(page_count(), true));
  209. return {};
  210. }
  211. ErrorOr<void> AnonymousVMObject::ensure_or_reset_cow_map()
  212. {
  213. if (m_cow_map.is_null())
  214. TRY(ensure_cow_map());
  215. else
  216. m_cow_map.fill(true);
  217. return {};
  218. }
  219. bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
  220. {
  221. auto const& page = physical_pages()[page_index];
  222. if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
  223. return true;
  224. if (is_shared)
  225. return false;
  226. return !m_cow_map.is_null() && m_cow_map.get(page_index);
  227. }
  228. ErrorOr<void> AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
  229. {
  230. TRY(ensure_cow_map());
  231. m_cow_map.set(page_index, cow);
  232. return {};
  233. }
  234. size_t AnonymousVMObject::cow_pages() const
  235. {
  236. if (m_cow_map.is_null())
  237. return 0;
  238. return m_cow_map.count_slow(true);
  239. }
  240. PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
  241. {
  242. VERIFY_INTERRUPTS_DISABLED();
  243. SpinlockLocker lock(m_lock);
  244. if (is_volatile()) {
  245. // A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
  246. dbgln("COW fault in volatile region, will crash.");
  247. return PageFaultResponse::ShouldCrash;
  248. }
  249. auto& page_slot = physical_pages()[page_index];
  250. // If we were sharing committed COW pages with another process, and the other process
  251. // has exhausted the supply, we can stop counting the shared pages.
  252. if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
  253. m_shared_committed_cow_pages = nullptr;
  254. if (page_slot->ref_count() == 1) {
  255. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
  256. MUST(set_should_cow(page_index, false)); // If we received a COW fault, we already have a cow map allocated, so this is infallible
  257. if (m_shared_committed_cow_pages) {
  258. m_shared_committed_cow_pages->uncommit_one();
  259. if (m_shared_committed_cow_pages->is_empty())
  260. m_shared_committed_cow_pages = nullptr;
  261. }
  262. return PageFaultResponse::Continue;
  263. }
  264. RefPtr<PhysicalPage> page;
  265. if (m_shared_committed_cow_pages) {
  266. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!");
  267. page = m_shared_committed_cow_pages->take_one();
  268. } else {
  269. dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!");
  270. auto page_or_error = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  271. if (page_or_error.is_error()) {
  272. dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
  273. return PageFaultResponse::OutOfMemory;
  274. }
  275. page = page_or_error.release_value();
  276. }
  277. dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
  278. {
  279. SpinlockLocker mm_locker(s_mm_lock);
  280. u8* dest_ptr = MM.quickmap_page(*page);
  281. SmapDisabler disabler;
  282. void* fault_at;
  283. if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
  284. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  285. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
  286. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  287. else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
  288. dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
  289. page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
  290. else
  291. VERIFY_NOT_REACHED();
  292. }
  293. MM.unquickmap_page();
  294. }
  295. page_slot = move(page);
  296. MUST(set_should_cow(page_index, false)); // If we received a COW fault, we already have a cow map allocated, so this is infallible
  297. return PageFaultResponse::Continue;
  298. }
  299. AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
  300. : m_committed_pages(move(committed_pages))
  301. {
  302. }
  303. AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages() = default;
  304. NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
  305. {
  306. SpinlockLocker locker(m_lock);
  307. return m_committed_pages.take_one();
  308. }
  309. void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
  310. {
  311. SpinlockLocker locker(m_lock);
  312. m_committed_pages.uncommit_one();
  313. }
  314. }