Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/CoreDump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/Sections.h>
  33. #include <Kernel/StdLib.h>
  34. #include <Kernel/TTY/TTY.h>
  35. #include <Kernel/Thread.h>
  36. #include <Kernel/ThreadTracer.h>
  37. #include <LibC/errno_numbers.h>
  38. #include <LibC/limits.h>
  39. namespace Kernel {
  40. static void create_signal_trampoline();
  41. RecursiveSpinLock g_profiling_lock;
  42. static Atomic<pid_t> next_pid;
  43. static Singleton<ProtectedValue<Process::List>> s_processes;
  44. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  45. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  46. static Singleton<ProtectedValue<String>> s_hostname;
  47. ProtectedValue<String>& hostname()
  48. {
  49. return *s_hostname;
  50. }
  51. ProtectedValue<Process::List>& processes()
  52. {
  53. return *s_processes;
  54. }
  55. ProcessID Process::allocate_pid()
  56. {
  57. // Overflow is UB, and negative PIDs wreck havoc.
  58. // TODO: Handle PID overflow
  59. // For example: Use an Atomic<u32>, mask the most significant bit,
  60. // retry if PID is already taken as a PID, taken as a TID,
  61. // takes as a PGID, taken as a SID, or zero.
  62. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  63. }
  64. UNMAP_AFTER_INIT void Process::initialize()
  65. {
  66. g_modules = new HashMap<String, OwnPtr<Module>>;
  67. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  68. hostname().with_exclusive([&](auto& name) {
  69. name = "courage";
  70. });
  71. create_signal_trampoline();
  72. }
  73. NonnullRefPtrVector<Process> Process::all_processes()
  74. {
  75. NonnullRefPtrVector<Process> output;
  76. processes().with_shared([&](const auto& list) {
  77. output.ensure_capacity(list.size_slow());
  78. for (const auto& process : list)
  79. output.append(NonnullRefPtr<Process>(process));
  80. });
  81. return output;
  82. }
  83. bool Process::in_group(gid_t gid) const
  84. {
  85. return this->gid() == gid || extra_gids().contains_slow(gid);
  86. }
  87. void Process::kill_threads_except_self()
  88. {
  89. InterruptDisabler disabler;
  90. if (thread_count() <= 1)
  91. return;
  92. auto current_thread = Thread::current();
  93. for_each_thread([&](Thread& thread) {
  94. if (&thread == current_thread)
  95. return;
  96. if (auto state = thread.state(); state == Thread::State::Dead
  97. || state == Thread::State::Dying)
  98. return;
  99. // We need to detach this thread in case it hasn't been joined
  100. thread.detach();
  101. thread.set_should_die();
  102. });
  103. u32 dropped_lock_count = 0;
  104. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  105. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  106. }
  107. void Process::kill_all_threads()
  108. {
  109. for_each_thread([&](Thread& thread) {
  110. // We need to detach this thread in case it hasn't been joined
  111. thread.detach();
  112. thread.set_should_die();
  113. });
  114. }
  115. void Process::register_new(Process& process)
  116. {
  117. // Note: this is essentially the same like process->ref()
  118. RefPtr<Process> new_process = process;
  119. processes().with_exclusive([&](auto& list) {
  120. list.prepend(process);
  121. });
  122. }
  123. RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  124. {
  125. auto parts = path.split('/');
  126. if (arguments.is_empty()) {
  127. arguments.append(parts.last());
  128. }
  129. RefPtr<Custody> cwd;
  130. if (auto parent = Process::from_pid(parent_pid))
  131. cwd = parent->m_cwd;
  132. if (!cwd)
  133. cwd = VirtualFileSystem::the().root_custody();
  134. auto process = Process::create(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty);
  135. if (!first_thread)
  136. return {};
  137. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  138. first_thread = nullptr;
  139. return {};
  140. }
  141. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  142. auto description = device_to_use_as_tty.open(O_RDWR).value();
  143. auto setup_description = [&process, &description](int fd) {
  144. process->m_fds.m_fds_metadatas[fd].allocate();
  145. process->m_fds[fd].set(*description);
  146. };
  147. setup_description(0);
  148. setup_description(1);
  149. setup_description(2);
  150. error = process->exec(path, move(arguments), move(environment)).error();
  151. if (error != 0) {
  152. dbgln("Failed to exec {}: {}", path, error);
  153. first_thread = nullptr;
  154. return {};
  155. }
  156. register_new(*process);
  157. error = 0;
  158. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockCondition::finalize().
  159. (void)process.leak_ref();
  160. return process;
  161. }
  162. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  163. {
  164. auto process = Process::create(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true);
  165. if (!first_thread || !process)
  166. return {};
  167. #if ARCH(I386)
  168. first_thread->regs().eip = (FlatPtr)entry;
  169. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  170. #else
  171. first_thread->regs().rip = (FlatPtr)entry;
  172. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  173. #endif
  174. if (do_register == RegisterProcess::Yes)
  175. register_new(*process);
  176. ScopedSpinLock lock(g_scheduler_lock);
  177. first_thread->set_affinity(affinity);
  178. first_thread->set_state(Thread::State::Runnable);
  179. return process;
  180. }
  181. void Process::protect_data()
  182. {
  183. m_protected_data_refs.unref([&]() {
  184. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, false);
  185. });
  186. }
  187. void Process::unprotect_data()
  188. {
  189. m_protected_data_refs.ref([&]() {
  190. MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values }, true);
  191. });
  192. }
  193. RefPtr<Process> Process::create(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  194. {
  195. auto space = Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr);
  196. if (!space)
  197. return {};
  198. auto process = adopt_ref_if_nonnull(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty));
  199. if (!process)
  200. return {};
  201. auto result = process->attach_resources(space.release_nonnull(), first_thread, fork_parent);
  202. if (result.is_error())
  203. return {};
  204. return process;
  205. }
  206. Process::Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  207. : m_name(move(name))
  208. , m_is_kernel_process(is_kernel_process)
  209. , m_executable(move(executable))
  210. , m_cwd(move(cwd))
  211. , m_tty(tty)
  212. , m_wait_block_condition(*this)
  213. {
  214. // Ensure that we protect the process data when exiting the constructor.
  215. ProtectedDataMutationScope scope { *this };
  216. m_protected_values.pid = allocate_pid();
  217. m_protected_values.ppid = ppid;
  218. m_protected_values.uid = uid;
  219. m_protected_values.gid = gid;
  220. m_protected_values.euid = uid;
  221. m_protected_values.egid = gid;
  222. m_protected_values.suid = uid;
  223. m_protected_values.sgid = gid;
  224. auto maybe_procfs_traits = ProcessProcFSTraits::try_create({}, make_weak_ptr());
  225. // NOTE: This can fail, but it should be very, *very* rare.
  226. VERIFY(!maybe_procfs_traits.is_error());
  227. m_procfs_traits = maybe_procfs_traits.release_value();
  228. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  229. }
  230. KResult Process::attach_resources(NonnullOwnPtr<Memory::AddressSpace>&& preallocated_space, RefPtr<Thread>& first_thread, Process* fork_parent)
  231. {
  232. m_space = move(preallocated_space);
  233. if (fork_parent) {
  234. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  235. first_thread = Thread::current()->clone(*this);
  236. if (!first_thread)
  237. return ENOMEM;
  238. } else {
  239. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  240. auto thread_or_error = Thread::try_create(*this);
  241. if (thread_or_error.is_error())
  242. return thread_or_error.error();
  243. first_thread = thread_or_error.release_value();
  244. first_thread->detach();
  245. }
  246. return KSuccess;
  247. }
  248. Process::~Process()
  249. {
  250. unprotect_data();
  251. VERIFY(thread_count() == 0); // all threads should have been finalized
  252. VERIFY(!m_alarm_timer);
  253. PerformanceManager::add_process_exit_event(*this);
  254. }
  255. bool Process::unref() const
  256. {
  257. // NOTE: We need to obtain the process list lock before doing anything,
  258. // because otherwise someone might get in between us lowering the
  259. // refcount and acquiring the lock.
  260. return processes().with_exclusive([&](auto& list) {
  261. auto new_ref_count = deref_base();
  262. if (new_ref_count > 0)
  263. return false;
  264. if (m_list_node.is_in_list())
  265. list.remove(*const_cast<Process*>(this));
  266. delete this;
  267. return true;
  268. });
  269. }
  270. // Make sure the compiler doesn't "optimize away" this function:
  271. extern void signal_trampoline_dummy() __attribute__((used));
  272. void signal_trampoline_dummy()
  273. {
  274. #if ARCH(I386)
  275. // The trampoline preserves the current eax, pushes the signal code and
  276. // then calls the signal handler. We do this because, when interrupting a
  277. // blocking syscall, that syscall may return some special error code in eax;
  278. // This error code would likely be overwritten by the signal handler, so it's
  279. // necessary to preserve it here.
  280. asm(
  281. ".intel_syntax noprefix\n"
  282. ".globl asm_signal_trampoline\n"
  283. "asm_signal_trampoline:\n"
  284. "push ebp\n"
  285. "mov ebp, esp\n"
  286. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  287. "sub esp, 4\n" // align the stack to 16 bytes
  288. "mov eax, [ebp+12]\n" // push the signal code
  289. "push eax\n"
  290. "call [ebp+8]\n" // call the signal handler
  291. "add esp, 8\n"
  292. "mov eax, %P0\n"
  293. "int 0x82\n" // sigreturn syscall
  294. ".globl asm_signal_trampoline_end\n"
  295. "asm_signal_trampoline_end:\n"
  296. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  297. #elif ARCH(X86_64)
  298. // The trampoline preserves the current rax, pushes the signal code and
  299. // then calls the signal handler. We do this because, when interrupting a
  300. // blocking syscall, that syscall may return some special error code in eax;
  301. // This error code would likely be overwritten by the signal handler, so it's
  302. // necessary to preserve it here.
  303. asm(
  304. ".intel_syntax noprefix\n"
  305. ".globl asm_signal_trampoline\n"
  306. "asm_signal_trampoline:\n"
  307. "push rbp\n"
  308. "mov rbp, rsp\n"
  309. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  310. "sub rsp, 8\n" // align the stack to 16 bytes
  311. "mov rdi, [rbp+24]\n" // push the signal code
  312. "call [rbp+16]\n" // call the signal handler
  313. "add rsp, 8\n"
  314. "mov rax, %P0\n"
  315. "int 0x82\n" // sigreturn syscall
  316. ".globl asm_signal_trampoline_end\n"
  317. "asm_signal_trampoline_end:\n"
  318. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  319. #endif
  320. }
  321. extern "C" char const asm_signal_trampoline[];
  322. extern "C" char const asm_signal_trampoline_end[];
  323. void create_signal_trampoline()
  324. {
  325. // NOTE: We leak this region.
  326. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).leak_ptr();
  327. g_signal_trampoline_region->set_syscall_region(true);
  328. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  329. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  330. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  331. g_signal_trampoline_region->set_writable(false);
  332. g_signal_trampoline_region->remap();
  333. }
  334. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  335. {
  336. VERIFY(!is_dead());
  337. VERIFY(Process::current() == this);
  338. if (out_of_memory) {
  339. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  340. } else {
  341. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  342. auto* symbol = symbolicate_kernel_address(ip);
  343. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  344. } else {
  345. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  346. }
  347. dump_backtrace();
  348. }
  349. {
  350. ProtectedDataMutationScope scope { *this };
  351. m_protected_values.termination_signal = signal;
  352. }
  353. set_dump_core(!out_of_memory);
  354. address_space().dump_regions();
  355. VERIFY(is_user_process());
  356. die();
  357. // We can not return from here, as there is nowhere
  358. // to unwind to, so die right away.
  359. Thread::current()->die_if_needed();
  360. VERIFY_NOT_REACHED();
  361. }
  362. RefPtr<Process> Process::from_pid(ProcessID pid)
  363. {
  364. return processes().with_shared([&](const auto& list) -> RefPtr<Process> {
  365. for (auto& process : list) {
  366. if (process.pid() == pid)
  367. return &process;
  368. }
  369. return {};
  370. });
  371. }
  372. const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
  373. {
  374. ScopedSpinLock lock(m_fds_lock);
  375. VERIFY(m_fds_metadatas[i].is_allocated());
  376. return m_fds_metadatas[i];
  377. }
  378. Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
  379. {
  380. ScopedSpinLock lock(m_fds_lock);
  381. VERIFY(m_fds_metadatas[i].is_allocated());
  382. return m_fds_metadatas[i];
  383. }
  384. RefPtr<FileDescription> Process::FileDescriptions::file_description(int fd) const
  385. {
  386. ScopedSpinLock lock(m_fds_lock);
  387. if (fd < 0)
  388. return nullptr;
  389. if (static_cast<size_t>(fd) < m_fds_metadatas.size())
  390. return m_fds_metadatas[fd].description();
  391. return nullptr;
  392. }
  393. void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
  394. {
  395. ScopedSpinLock lock(m_fds_lock);
  396. for (auto& file_description_metadata : m_fds_metadatas) {
  397. callback(file_description_metadata);
  398. }
  399. }
  400. void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
  401. {
  402. ScopedSpinLock lock(m_fds_lock);
  403. for (auto& file_description_metadata : m_fds_metadatas) {
  404. callback(file_description_metadata);
  405. }
  406. }
  407. size_t Process::FileDescriptions::open_count() const
  408. {
  409. size_t count = 0;
  410. enumerate([&](auto& file_description_metadata) {
  411. if (file_description_metadata.is_valid())
  412. ++count;
  413. });
  414. return count;
  415. }
  416. KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
  417. {
  418. ScopedSpinLock lock(m_fds_lock);
  419. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  420. if (!m_fds_metadatas[i].is_allocated()) {
  421. m_fds_metadatas[i].allocate();
  422. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  423. }
  424. }
  425. return EMFILE;
  426. }
  427. Time kgettimeofday()
  428. {
  429. return TimeManagement::now();
  430. }
  431. siginfo_t Process::wait_info()
  432. {
  433. siginfo_t siginfo {};
  434. siginfo.si_signo = SIGCHLD;
  435. siginfo.si_pid = pid().value();
  436. siginfo.si_uid = uid();
  437. if (m_protected_values.termination_signal) {
  438. siginfo.si_status = m_protected_values.termination_signal;
  439. siginfo.si_code = CLD_KILLED;
  440. } else {
  441. siginfo.si_status = m_protected_values.termination_status;
  442. siginfo.si_code = CLD_EXITED;
  443. }
  444. return siginfo;
  445. }
  446. Custody& Process::current_directory()
  447. {
  448. if (!m_cwd)
  449. m_cwd = VirtualFileSystem::the().root_custody();
  450. return *m_cwd;
  451. }
  452. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Userspace<char const*> user_path, size_t path_length) const
  453. {
  454. if (path_length == 0)
  455. return EINVAL;
  456. if (path_length > PATH_MAX)
  457. return ENAMETOOLONG;
  458. auto string_or_error = try_copy_kstring_from_user(user_path, path_length);
  459. if (string_or_error.is_error())
  460. return string_or_error.error();
  461. return string_or_error.release_value();
  462. }
  463. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  464. {
  465. Userspace<char const*> path_characters((FlatPtr)path.characters);
  466. return get_syscall_path_argument(path_characters, path.length);
  467. }
  468. bool Process::dump_core()
  469. {
  470. VERIFY(is_dumpable());
  471. VERIFY(should_core_dump());
  472. dbgln("Generating coredump for pid: {}", pid().value());
  473. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), kgettimeofday().to_truncated_seconds());
  474. auto coredump = CoreDump::create(*this, coredump_path);
  475. if (!coredump)
  476. return false;
  477. return !coredump->write().is_error();
  478. }
  479. bool Process::dump_perfcore()
  480. {
  481. VERIFY(is_dumpable());
  482. VERIFY(m_perf_event_buffer);
  483. dbgln("Generating perfcore for pid: {}", pid().value());
  484. // Try to generate a filename which isn't already used.
  485. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  486. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  487. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  488. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  489. if (description_or_error.is_error()) {
  490. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  491. return false;
  492. }
  493. auto& description = *description_or_error.value();
  494. KBufferBuilder builder;
  495. if (!m_perf_event_buffer->to_json(builder)) {
  496. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  497. return false;
  498. }
  499. auto json = builder.build();
  500. if (!json) {
  501. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  502. return false;
  503. }
  504. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  505. if (description.write(json_buffer, json->size()).is_error()) {
  506. return false;
  507. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  508. }
  509. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  510. return true;
  511. }
  512. void Process::finalize()
  513. {
  514. VERIFY(Thread::current() == g_finalizer);
  515. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  516. if (is_dumpable()) {
  517. if (m_should_dump_core)
  518. dump_core();
  519. if (m_perf_event_buffer) {
  520. dump_perfcore();
  521. TimeManagement::the().disable_profile_timer();
  522. }
  523. }
  524. m_threads_for_coredump.clear();
  525. if (m_alarm_timer)
  526. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  527. m_fds.clear();
  528. m_tty = nullptr;
  529. m_executable = nullptr;
  530. m_cwd = nullptr;
  531. m_root_directory = nullptr;
  532. m_root_directory_relative_to_global_root = nullptr;
  533. m_arguments.clear();
  534. m_environment.clear();
  535. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  536. {
  537. // FIXME: PID/TID BUG
  538. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  539. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  540. parent_thread->send_signal(SIGCHLD, this);
  541. }
  542. }
  543. if (!!ppid()) {
  544. if (auto parent = Process::from_pid(ppid())) {
  545. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  546. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  547. }
  548. }
  549. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  550. m_space->remove_all_regions({});
  551. VERIFY(ref_count() > 0);
  552. // WaitBlockCondition::finalize will be in charge of dropping the last
  553. // reference if there are still waiters around, or whenever the last
  554. // waitable states are consumed. Unless there is no parent around
  555. // anymore, in which case we'll just drop it right away.
  556. m_wait_block_condition.finalize();
  557. }
  558. void Process::disowned_by_waiter(Process& process)
  559. {
  560. m_wait_block_condition.disowned_by_waiter(process);
  561. }
  562. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  563. {
  564. if (auto parent = Process::from_pid(ppid()))
  565. parent->m_wait_block_condition.unblock(*this, flags, signal);
  566. }
  567. void Process::die()
  568. {
  569. auto expected = State::Running;
  570. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  571. // It's possible that another thread calls this at almost the same time
  572. // as we can't always instantly kill other threads (they may be blocked)
  573. // So if we already were called then other threads should stop running
  574. // momentarily and we only really need to service the first thread
  575. return;
  576. }
  577. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  578. // getting an EOF when the last process using the slave PTY dies.
  579. // If the master PTY owner relies on an EOF to know when to wait() on a
  580. // slave owner, we have to allow the PTY pair to be torn down.
  581. m_tty = nullptr;
  582. VERIFY(m_threads_for_coredump.is_empty());
  583. for_each_thread([&](auto& thread) {
  584. m_threads_for_coredump.append(thread);
  585. });
  586. processes().with_shared([&](const auto& list) {
  587. for (auto it = list.begin(); it != list.end();) {
  588. auto& process = *it;
  589. ++it;
  590. if (process.has_tracee_thread(pid())) {
  591. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  592. process.stop_tracing();
  593. auto err = process.send_signal(SIGSTOP, this);
  594. if (err.is_error())
  595. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  596. }
  597. }
  598. });
  599. kill_all_threads();
  600. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  601. KCOVDevice::free_process();
  602. #endif
  603. }
  604. void Process::terminate_due_to_signal(u8 signal)
  605. {
  606. VERIFY_INTERRUPTS_DISABLED();
  607. VERIFY(signal < 32);
  608. VERIFY(Process::current() == this);
  609. dbgln("Terminating {} due to signal {}", *this, signal);
  610. {
  611. ProtectedDataMutationScope scope { *this };
  612. m_protected_values.termination_status = 0;
  613. m_protected_values.termination_signal = signal;
  614. }
  615. die();
  616. }
  617. KResult Process::send_signal(u8 signal, Process* sender)
  618. {
  619. // Try to send it to the "obvious" main thread:
  620. auto receiver_thread = Thread::from_tid(pid().value());
  621. // If the main thread has died, there may still be other threads:
  622. if (!receiver_thread) {
  623. // The first one should be good enough.
  624. // Neither kill(2) nor kill(3) specify any selection precedure.
  625. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  626. receiver_thread = &thread;
  627. return IterationDecision::Break;
  628. });
  629. }
  630. if (receiver_thread) {
  631. receiver_thread->send_signal(signal, sender);
  632. return KSuccess;
  633. }
  634. return ESRCH;
  635. }
  636. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity, bool joinable)
  637. {
  638. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  639. // FIXME: Do something with guard pages?
  640. auto thread_or_error = Thread::try_create(*this);
  641. if (thread_or_error.is_error())
  642. return {};
  643. auto thread = thread_or_error.release_value();
  644. thread->set_name(move(name));
  645. thread->set_affinity(affinity);
  646. thread->set_priority(priority);
  647. if (!joinable)
  648. thread->detach();
  649. auto& regs = thread->regs();
  650. #if ARCH(I386)
  651. regs.eip = (FlatPtr)entry;
  652. regs.esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.rsp
  653. #else
  654. regs.rip = (FlatPtr)entry;
  655. regs.rsp = FlatPtr(entry_data); // entry function argument is expected to be in regs.rsp
  656. #endif
  657. ScopedSpinLock lock(g_scheduler_lock);
  658. thread->set_state(Thread::State::Runnable);
  659. return thread;
  660. }
  661. void Process::FileDescriptionAndFlags::clear()
  662. {
  663. // FIXME: Verify Process::m_fds_lock is locked!
  664. m_description = nullptr;
  665. m_flags = 0;
  666. }
  667. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  668. {
  669. // FIXME: Verify Process::m_fds_lock is locked!
  670. m_description = move(description);
  671. m_flags = flags;
  672. }
  673. Custody& Process::root_directory()
  674. {
  675. if (!m_root_directory)
  676. m_root_directory = VirtualFileSystem::the().root_custody();
  677. return *m_root_directory;
  678. }
  679. Custody& Process::root_directory_relative_to_global_root()
  680. {
  681. if (!m_root_directory_relative_to_global_root)
  682. m_root_directory_relative_to_global_root = root_directory();
  683. return *m_root_directory_relative_to_global_root;
  684. }
  685. void Process::set_root_directory(const Custody& root)
  686. {
  687. m_root_directory = root;
  688. }
  689. void Process::set_tty(TTY* tty)
  690. {
  691. m_tty = tty;
  692. }
  693. KResult Process::start_tracing_from(ProcessID tracer)
  694. {
  695. auto thread_tracer = ThreadTracer::create(tracer);
  696. if (!thread_tracer)
  697. return ENOMEM;
  698. m_tracer = move(thread_tracer);
  699. return KSuccess;
  700. }
  701. void Process::stop_tracing()
  702. {
  703. m_tracer = nullptr;
  704. }
  705. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  706. {
  707. VERIFY(m_tracer.ptr());
  708. m_tracer->set_regs(regs);
  709. thread.send_urgent_signal_to_self(SIGTRAP);
  710. }
  711. bool Process::create_perf_events_buffer_if_needed()
  712. {
  713. if (!m_perf_event_buffer) {
  714. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  715. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  716. }
  717. return !!m_perf_event_buffer;
  718. }
  719. void Process::delete_perf_events_buffer()
  720. {
  721. if (m_perf_event_buffer)
  722. m_perf_event_buffer = nullptr;
  723. }
  724. bool Process::remove_thread(Thread& thread)
  725. {
  726. ProtectedDataMutationScope scope { *this };
  727. auto thread_cnt_before = m_protected_values.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  728. VERIFY(thread_cnt_before != 0);
  729. thread_list().with([&](auto& thread_list) {
  730. thread_list.remove(thread);
  731. });
  732. return thread_cnt_before == 1;
  733. }
  734. bool Process::add_thread(Thread& thread)
  735. {
  736. ProtectedDataMutationScope scope { *this };
  737. bool is_first = m_protected_values.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  738. thread_list().with([&](auto& thread_list) {
  739. thread_list.append(thread);
  740. });
  741. return is_first;
  742. }
  743. void Process::set_dumpable(bool dumpable)
  744. {
  745. if (dumpable == m_protected_values.dumpable)
  746. return;
  747. ProtectedDataMutationScope scope { *this };
  748. m_protected_values.dumpable = dumpable;
  749. }
  750. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  751. {
  752. // Write it into the first available property slot.
  753. for (auto& slot : m_coredump_properties) {
  754. if (slot.key)
  755. continue;
  756. slot.key = move(key);
  757. slot.value = move(value);
  758. return KSuccess;
  759. }
  760. return ENOBUFS;
  761. }
  762. KResult Process::try_set_coredump_property(StringView key, StringView value)
  763. {
  764. auto key_kstring = KString::try_create(key);
  765. auto value_kstring = KString::try_create(value);
  766. if (key_kstring && value_kstring)
  767. return set_coredump_property(key_kstring.release_nonnull(), value_kstring.release_nonnull());
  768. return ENOMEM;
  769. };
  770. }