MemoryManager.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/StringView.h>
  29. #include <Kernel/Arch/i386/CPU.h>
  30. #include <Kernel/CMOS.h>
  31. #include <Kernel/FileSystem/Inode.h>
  32. #include <Kernel/Heap/kmalloc.h>
  33. #include <Kernel/Multiboot.h>
  34. #include <Kernel/Process.h>
  35. #include <Kernel/StdLib.h>
  36. #include <Kernel/VM/AnonymousVMObject.h>
  37. #include <Kernel/VM/ContiguousVMObject.h>
  38. #include <Kernel/VM/MemoryManager.h>
  39. #include <Kernel/VM/PageDirectory.h>
  40. #include <Kernel/VM/PhysicalRegion.h>
  41. #include <Kernel/VM/PurgeableVMObject.h>
  42. #include <Kernel/VM/SharedInodeVMObject.h>
  43. //#define MM_DEBUG
  44. //#define PAGE_FAULT_DEBUG
  45. extern u8* start_of_kernel_image;
  46. extern u8* end_of_kernel_image;
  47. extern FlatPtr start_of_kernel_text;
  48. extern FlatPtr start_of_kernel_data;
  49. extern FlatPtr end_of_kernel_bss;
  50. namespace Kernel {
  51. // NOTE: We can NOT use AK::Singleton for this class, because
  52. // MemoryManager::initialize is called *before* global constructors are
  53. // run. If we do, then AK::Singleton would get re-initialized, causing
  54. // the memory manager to be initialized twice!
  55. static MemoryManager* s_the;
  56. RecursiveSpinLock s_mm_lock;
  57. MemoryManager& MM
  58. {
  59. return *s_the;
  60. }
  61. bool MemoryManager::is_initialized()
  62. {
  63. return s_the != nullptr;
  64. }
  65. MemoryManager::MemoryManager()
  66. {
  67. ScopedSpinLock lock(s_mm_lock);
  68. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  69. parse_memory_map();
  70. write_cr3(kernel_page_directory().cr3());
  71. protect_kernel_image();
  72. m_shared_zero_page = allocate_user_physical_page();
  73. }
  74. MemoryManager::~MemoryManager()
  75. {
  76. }
  77. void MemoryManager::protect_kernel_image()
  78. {
  79. // Disable writing to the kernel text and rodata segments.
  80. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  81. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  82. pte.set_writable(false);
  83. }
  84. if (Processor::current().has_feature(CPUFeature::NX)) {
  85. // Disable execution of the kernel data and bss segments, as well as the kernel heap.
  86. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  87. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  88. pte.set_execute_disabled(true);
  89. }
  90. for (size_t i = FlatPtr(kmalloc_start); i < FlatPtr(kmalloc_end); i += PAGE_SIZE) {
  91. auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
  92. pte.set_execute_disabled(true);
  93. }
  94. }
  95. }
  96. void MemoryManager::parse_memory_map()
  97. {
  98. RefPtr<PhysicalRegion> region;
  99. bool region_is_super = false;
  100. // We need to make sure we exclude the kmalloc range as well as the kernel image.
  101. // The kmalloc range directly follows the kernel image
  102. const PhysicalAddress used_range_start(virtual_to_low_physical(FlatPtr(&start_of_kernel_image)));
  103. const PhysicalAddress used_range_end(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(kmalloc_end))));
  104. klog() << "MM: kernel range: " << used_range_start << " - " << PhysicalAddress(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(&end_of_kernel_image))));
  105. klog() << "MM: kmalloc range: " << PhysicalAddress(virtual_to_low_physical(FlatPtr(kmalloc_start))) << " - " << used_range_end;
  106. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  107. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  108. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  109. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  110. continue;
  111. // FIXME: Maybe make use of stuff below the 1MiB mark?
  112. if (mmap->addr < (1 * MiB))
  113. continue;
  114. if ((mmap->addr + mmap->len) > 0xffffffff)
  115. continue;
  116. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  117. if (diff != 0) {
  118. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  119. diff = PAGE_SIZE - diff;
  120. mmap->addr += diff;
  121. mmap->len -= diff;
  122. }
  123. if ((mmap->len % PAGE_SIZE) != 0) {
  124. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  125. mmap->len -= mmap->len % PAGE_SIZE;
  126. }
  127. if (mmap->len < PAGE_SIZE) {
  128. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  129. continue;
  130. }
  131. #ifdef MM_DEBUG
  132. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  133. #endif
  134. for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  135. auto addr = PhysicalAddress(page_base);
  136. if (addr.get() < used_range_end.get() && addr.get() >= used_range_start.get())
  137. continue;
  138. if (page_base < 7 * MiB) {
  139. // nothing
  140. } else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
  141. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  142. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  143. region = m_super_physical_regions.last();
  144. region_is_super = true;
  145. } else {
  146. region->expand(region->lower(), addr);
  147. }
  148. } else {
  149. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  150. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  151. region = m_user_physical_regions.last();
  152. region_is_super = false;
  153. } else {
  154. region->expand(region->lower(), addr);
  155. }
  156. }
  157. }
  158. }
  159. for (auto& region : m_super_physical_regions) {
  160. m_super_physical_pages += region.finalize_capacity();
  161. klog() << "Super physical region: " << region.lower() << " - " << region.upper();
  162. }
  163. for (auto& region : m_user_physical_regions) {
  164. m_user_physical_pages += region.finalize_capacity();
  165. klog() << "User physical region: " << region.lower() << " - " << region.upper();
  166. }
  167. ASSERT(m_super_physical_pages > 0);
  168. ASSERT(m_user_physical_pages > 0);
  169. }
  170. PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  171. {
  172. ASSERT_INTERRUPTS_DISABLED();
  173. ASSERT(s_mm_lock.own_lock());
  174. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  175. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  176. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  177. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  178. const PageDirectoryEntry& pde = pd[page_directory_index];
  179. if (!pde.is_present())
  180. return nullptr;
  181. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  182. }
  183. PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  184. {
  185. ASSERT_INTERRUPTS_DISABLED();
  186. ASSERT(s_mm_lock.own_lock());
  187. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  188. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  189. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  190. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  191. PageDirectoryEntry& pde = pd[page_directory_index];
  192. if (!pde.is_present()) {
  193. #ifdef MM_DEBUG
  194. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  195. #endif
  196. bool did_purge = false;
  197. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge);
  198. if (!page_table) {
  199. dbg() << "MM: Unable to allocate page table to map " << vaddr;
  200. return nullptr;
  201. }
  202. if (did_purge) {
  203. // If any memory had to be purged, ensure_pte may have been called as part
  204. // of the purging process. So we need to re-map the pd in this case to ensure
  205. // we're writing to the correct underlying physical page
  206. pd = quickmap_pd(page_directory, page_directory_table_index);
  207. ASSERT(&pde == &pd[page_directory_index]); // Sanity check
  208. ASSERT(!pde.is_present()); // Should have not changed
  209. }
  210. #ifdef MM_DEBUG
  211. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  212. #endif
  213. pde.set_page_table_base(page_table->paddr().get());
  214. pde.set_user_allowed(true);
  215. pde.set_present(true);
  216. pde.set_writable(true);
  217. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  218. // Use page_directory_table_index and page_directory_index as key
  219. // This allows us to release the page table entry when no longer needed
  220. auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table));
  221. ASSERT(result == AK::HashSetResult::InsertedNewEntry);
  222. }
  223. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  224. }
  225. void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release)
  226. {
  227. ASSERT_INTERRUPTS_DISABLED();
  228. ASSERT(s_mm_lock.own_lock());
  229. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  230. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  231. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  232. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  233. PageDirectoryEntry& pde = pd[page_directory_index];
  234. if (pde.is_present()) {
  235. auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()));
  236. auto& pte = page_table[page_table_index];
  237. pte.clear();
  238. if (is_last_release || page_table_index == 0x1ff) {
  239. // If this is the last PTE in a region or the last PTE in a page table then
  240. // check if we can also release the page table
  241. bool all_clear = true;
  242. for (u32 i = 0; i <= 0x1ff; i++) {
  243. if (!page_table[i].is_null()) {
  244. all_clear = false;
  245. break;
  246. }
  247. }
  248. if (all_clear) {
  249. pde.clear();
  250. auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff);
  251. ASSERT(result);
  252. #ifdef MM_DEBUG
  253. dbg() << "MM: Released page table for " << VirtualAddress(vaddr.get() & ~0x1fffff);
  254. #endif
  255. }
  256. }
  257. }
  258. }
  259. void MemoryManager::initialize(u32 cpu)
  260. {
  261. auto mm_data = new MemoryManagerData;
  262. #ifdef MM_DEBUG
  263. dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
  264. #endif
  265. Processor::current().set_mm_data(*mm_data);
  266. if (cpu == 0) {
  267. s_the = new MemoryManager;
  268. kmalloc_enable_expand();
  269. }
  270. }
  271. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  272. {
  273. ScopedSpinLock lock(s_mm_lock);
  274. for (auto& region : MM.m_kernel_regions) {
  275. if (region.contains(vaddr))
  276. return &region;
  277. }
  278. return nullptr;
  279. }
  280. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  281. {
  282. ScopedSpinLock lock(s_mm_lock);
  283. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  284. for (auto& region : process.m_regions) {
  285. if (region.contains(vaddr))
  286. return &region;
  287. }
  288. #ifdef MM_DEBUG
  289. dbg() << process << " Couldn't find user region for " << vaddr;
  290. #endif
  291. return nullptr;
  292. }
  293. Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr)
  294. {
  295. ScopedSpinLock lock(s_mm_lock);
  296. if (auto* region = user_region_from_vaddr(process, vaddr))
  297. return region;
  298. return kernel_region_from_vaddr(vaddr);
  299. }
  300. const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr)
  301. {
  302. ScopedSpinLock lock(s_mm_lock);
  303. if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
  304. return region;
  305. return kernel_region_from_vaddr(vaddr);
  306. }
  307. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  308. {
  309. ScopedSpinLock lock(s_mm_lock);
  310. if (auto* region = kernel_region_from_vaddr(vaddr))
  311. return region;
  312. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  313. if (!page_directory)
  314. return nullptr;
  315. ASSERT(page_directory->process());
  316. return user_region_from_vaddr(*page_directory->process(), vaddr);
  317. }
  318. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  319. {
  320. ASSERT_INTERRUPTS_DISABLED();
  321. ASSERT(Thread::current() != nullptr);
  322. ScopedSpinLock lock(s_mm_lock);
  323. if (Processor::current().in_irq()) {
  324. dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
  325. dump_kernel_regions();
  326. return PageFaultResponse::ShouldCrash;
  327. }
  328. #ifdef PAGE_FAULT_DEBUG
  329. dbg() << "MM: CPU[" << Processor::current().id() << "] handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
  330. #endif
  331. auto* region = find_region_from_vaddr(fault.vaddr());
  332. if (!region) {
  333. klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
  334. return PageFaultResponse::ShouldCrash;
  335. }
  336. return region->handle_fault(fault);
  337. }
  338. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  339. {
  340. ASSERT(!(size % PAGE_SIZE));
  341. ScopedSpinLock lock(s_mm_lock);
  342. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  343. if (!range.is_valid())
  344. return nullptr;
  345. auto vmobject = ContiguousVMObject::create_with_size(size);
  346. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  347. if (!region)
  348. return nullptr;
  349. return region;
  350. }
  351. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  352. {
  353. ASSERT(!(size % PAGE_SIZE));
  354. ScopedSpinLock lock(s_mm_lock);
  355. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  356. if (!range.is_valid())
  357. return nullptr;
  358. auto vmobject = AnonymousVMObject::create_with_size(size);
  359. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  360. if (!region)
  361. return nullptr;
  362. if (should_commit && !region->commit())
  363. return nullptr;
  364. return region;
  365. }
  366. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  367. {
  368. ASSERT(!(size % PAGE_SIZE));
  369. ScopedSpinLock lock(s_mm_lock);
  370. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  371. if (!range.is_valid())
  372. return nullptr;
  373. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  374. if (!vmobject)
  375. return nullptr;
  376. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  377. }
  378. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  379. {
  380. ASSERT(!(size % PAGE_SIZE));
  381. ScopedSpinLock lock(s_mm_lock);
  382. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  383. if (!range.is_valid())
  384. return nullptr;
  385. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  386. if (!vmobject)
  387. return nullptr;
  388. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  389. }
  390. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  391. {
  392. return allocate_kernel_region(size, name, access, true, true, cacheable);
  393. }
  394. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  395. {
  396. ScopedSpinLock lock(s_mm_lock);
  397. OwnPtr<Region> region;
  398. if (user_accessible)
  399. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  400. else
  401. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  402. if (region)
  403. region->map(kernel_page_directory());
  404. return region;
  405. }
  406. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  407. {
  408. ASSERT(!(size % PAGE_SIZE));
  409. ScopedSpinLock lock(s_mm_lock);
  410. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  411. if (!range.is_valid())
  412. return nullptr;
  413. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  414. }
  415. void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page)
  416. {
  417. ScopedSpinLock lock(s_mm_lock);
  418. for (auto& region : m_user_physical_regions) {
  419. if (!region.contains(page)) {
  420. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  421. continue;
  422. }
  423. region.return_page(page);
  424. --m_user_physical_pages_used;
  425. return;
  426. }
  427. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  428. ASSERT_NOT_REACHED();
  429. }
  430. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  431. {
  432. ASSERT(s_mm_lock.is_locked());
  433. RefPtr<PhysicalPage> page;
  434. for (auto& region : m_user_physical_regions) {
  435. page = region.take_free_page(false);
  436. if (!page.is_null())
  437. break;
  438. }
  439. return page;
  440. }
  441. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge)
  442. {
  443. ScopedSpinLock lock(s_mm_lock);
  444. auto page = find_free_user_physical_page();
  445. bool purged_pages = false;
  446. if (!page) {
  447. // We didn't have a single free physical page. Let's try to free something up!
  448. // First, we look for a purgeable VMObject in the volatile state.
  449. for_each_vmobject_of_type<PurgeableVMObject>([&](auto& vmobject) {
  450. int purged_page_count = vmobject.purge_with_interrupts_disabled({});
  451. if (purged_page_count) {
  452. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
  453. page = find_free_user_physical_page();
  454. purged_pages = true;
  455. ASSERT(page);
  456. return IterationDecision::Break;
  457. }
  458. return IterationDecision::Continue;
  459. });
  460. if (!page) {
  461. klog() << "MM: no user physical pages available";
  462. return {};
  463. }
  464. }
  465. #ifdef MM_DEBUG
  466. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  467. #endif
  468. if (should_zero_fill == ShouldZeroFill::Yes) {
  469. auto* ptr = quickmap_page(*page);
  470. memset(ptr, 0, PAGE_SIZE);
  471. unquickmap_page();
  472. }
  473. if (did_purge)
  474. *did_purge = purged_pages;
  475. ++m_user_physical_pages_used;
  476. return page;
  477. }
  478. void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page)
  479. {
  480. ScopedSpinLock lock(s_mm_lock);
  481. for (auto& region : m_super_physical_regions) {
  482. if (!region.contains(page)) {
  483. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  484. continue;
  485. }
  486. region.return_page(page);
  487. --m_super_physical_pages_used;
  488. return;
  489. }
  490. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  491. ASSERT_NOT_REACHED();
  492. }
  493. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  494. {
  495. ASSERT(!(size % PAGE_SIZE));
  496. ScopedSpinLock lock(s_mm_lock);
  497. size_t count = ceil_div(size, PAGE_SIZE);
  498. NonnullRefPtrVector<PhysicalPage> physical_pages;
  499. for (auto& region : m_super_physical_regions) {
  500. physical_pages = region.take_contiguous_free_pages((count), true);
  501. if (physical_pages.is_empty())
  502. continue;
  503. }
  504. if (physical_pages.is_empty()) {
  505. if (m_super_physical_regions.is_empty()) {
  506. klog() << "MM: no super physical regions available (?)";
  507. }
  508. klog() << "MM: no super physical pages available";
  509. ASSERT_NOT_REACHED();
  510. return {};
  511. }
  512. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  513. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  514. m_super_physical_pages_used += count;
  515. return physical_pages;
  516. }
  517. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  518. {
  519. ScopedSpinLock lock(s_mm_lock);
  520. RefPtr<PhysicalPage> page;
  521. for (auto& region : m_super_physical_regions) {
  522. page = region.take_free_page(true);
  523. if (page.is_null())
  524. continue;
  525. }
  526. if (!page) {
  527. if (m_super_physical_regions.is_empty()) {
  528. klog() << "MM: no super physical regions available (?)";
  529. }
  530. klog() << "MM: no super physical pages available";
  531. ASSERT_NOT_REACHED();
  532. return {};
  533. }
  534. #ifdef MM_DEBUG
  535. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  536. #endif
  537. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  538. ++m_super_physical_pages_used;
  539. return page;
  540. }
  541. void MemoryManager::enter_process_paging_scope(Process& process)
  542. {
  543. auto current_thread = Thread::current();
  544. ASSERT(current_thread != nullptr);
  545. ScopedSpinLock lock(s_mm_lock);
  546. current_thread->tss().cr3 = process.page_directory().cr3();
  547. write_cr3(process.page_directory().cr3());
  548. }
  549. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  550. {
  551. #ifdef MM_DEBUG
  552. dbg() << "MM: Flush " << page_count << " pages at " << vaddr << " on CPU#" << Processor::current().id();
  553. #endif
  554. Processor::flush_tlb_local(vaddr, page_count);
  555. }
  556. void MemoryManager::flush_tlb(VirtualAddress vaddr, size_t page_count)
  557. {
  558. #ifdef MM_DEBUG
  559. dbg() << "MM: Flush " << page_count << " pages at " << vaddr;
  560. #endif
  561. Processor::flush_tlb(vaddr, page_count);
  562. }
  563. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  564. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  565. {
  566. ASSERT(s_mm_lock.own_lock());
  567. auto& mm_data = get_data();
  568. auto& pte = boot_pd3_pt1023[4];
  569. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  570. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  571. #ifdef MM_DEBUG
  572. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  573. #endif
  574. pte.set_physical_page_base(pd_paddr.get());
  575. pte.set_present(true);
  576. pte.set_writable(true);
  577. pte.set_user_allowed(false);
  578. // Because we must continue to hold the MM lock while we use this
  579. // mapping, it is sufficient to only flush on the current CPU. Other
  580. // CPUs trying to use this API must wait on the MM lock anyway
  581. flush_tlb_local(VirtualAddress(0xffe04000));
  582. } else {
  583. // Even though we don't allow this to be called concurrently, it's
  584. // possible that this PD was mapped on a different CPU and we don't
  585. // broadcast the flush. If so, we still need to flush the TLB.
  586. if (mm_data.m_last_quickmap_pd != pd_paddr)
  587. flush_tlb_local(VirtualAddress(0xffe04000));
  588. }
  589. mm_data.m_last_quickmap_pd = pd_paddr;
  590. return (PageDirectoryEntry*)0xffe04000;
  591. }
  592. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  593. {
  594. ASSERT(s_mm_lock.own_lock());
  595. auto& mm_data = get_data();
  596. auto& pte = boot_pd3_pt1023[0];
  597. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  598. #ifdef MM_DEBUG
  599. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  600. #endif
  601. pte.set_physical_page_base(pt_paddr.get());
  602. pte.set_present(true);
  603. pte.set_writable(true);
  604. pte.set_user_allowed(false);
  605. // Because we must continue to hold the MM lock while we use this
  606. // mapping, it is sufficient to only flush on the current CPU. Other
  607. // CPUs trying to use this API must wait on the MM lock anyway
  608. flush_tlb_local(VirtualAddress(0xffe00000));
  609. } else {
  610. // Even though we don't allow this to be called concurrently, it's
  611. // possible that this PT was mapped on a different CPU and we don't
  612. // broadcast the flush. If so, we still need to flush the TLB.
  613. if (mm_data.m_last_quickmap_pt != pt_paddr)
  614. flush_tlb_local(VirtualAddress(0xffe00000));
  615. }
  616. mm_data.m_last_quickmap_pt = pt_paddr;
  617. return (PageTableEntry*)0xffe00000;
  618. }
  619. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  620. {
  621. ASSERT_INTERRUPTS_DISABLED();
  622. auto& mm_data = get_data();
  623. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  624. ScopedSpinLock lock(s_mm_lock);
  625. u32 pte_idx = 8 + Processor::current().id();
  626. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  627. auto& pte = boot_pd3_pt1023[pte_idx];
  628. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  629. #ifdef MM_DEBUG
  630. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  631. #endif
  632. pte.set_physical_page_base(physical_page.paddr().get());
  633. pte.set_present(true);
  634. pte.set_writable(true);
  635. pte.set_user_allowed(false);
  636. flush_tlb_local(vaddr);
  637. }
  638. return vaddr.as_ptr();
  639. }
  640. void MemoryManager::unquickmap_page()
  641. {
  642. ASSERT_INTERRUPTS_DISABLED();
  643. ScopedSpinLock lock(s_mm_lock);
  644. auto& mm_data = get_data();
  645. ASSERT(mm_data.m_quickmap_in_use.is_locked());
  646. u32 pte_idx = 8 + Processor::current().id();
  647. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  648. auto& pte = boot_pd3_pt1023[pte_idx];
  649. pte.clear();
  650. flush_tlb_local(vaddr);
  651. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  652. }
  653. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  654. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  655. {
  656. ASSERT(s_mm_lock.is_locked());
  657. ASSERT(size);
  658. if (base_vaddr > base_vaddr.offset(size)) {
  659. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  660. return false;
  661. }
  662. VirtualAddress vaddr = base_vaddr.page_base();
  663. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  664. if (end_vaddr < vaddr) {
  665. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  666. return false;
  667. }
  668. const Region* region = nullptr;
  669. while (vaddr <= end_vaddr) {
  670. if (!region || !region->contains(vaddr)) {
  671. if (space == AccessSpace::Kernel)
  672. region = kernel_region_from_vaddr(vaddr);
  673. if (!region || !region->contains(vaddr))
  674. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  675. if (!region
  676. || (space == AccessSpace::User && !region->is_user_accessible())
  677. || (access_type == AccessType::Read && !region->is_readable())
  678. || (access_type == AccessType::Write && !region->is_writable())) {
  679. return false;
  680. }
  681. }
  682. vaddr = region->range().end();
  683. }
  684. return true;
  685. }
  686. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  687. {
  688. if (!is_user_address(vaddr))
  689. return false;
  690. ScopedSpinLock lock(s_mm_lock);
  691. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  692. return region && region->is_user_accessible() && region->is_stack();
  693. }
  694. void MemoryManager::register_vmobject(VMObject& vmobject)
  695. {
  696. ScopedSpinLock lock(s_mm_lock);
  697. m_vmobjects.append(&vmobject);
  698. }
  699. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  700. {
  701. ScopedSpinLock lock(s_mm_lock);
  702. m_vmobjects.remove(&vmobject);
  703. }
  704. void MemoryManager::register_region(Region& region)
  705. {
  706. ScopedSpinLock lock(s_mm_lock);
  707. if (region.is_kernel())
  708. m_kernel_regions.append(&region);
  709. else
  710. m_user_regions.append(&region);
  711. }
  712. void MemoryManager::unregister_region(Region& region)
  713. {
  714. ScopedSpinLock lock(s_mm_lock);
  715. if (region.is_kernel())
  716. m_kernel_regions.remove(&region);
  717. else
  718. m_user_regions.remove(&region);
  719. }
  720. void MemoryManager::dump_kernel_regions()
  721. {
  722. klog() << "Kernel regions:";
  723. klog() << "BEGIN END SIZE ACCESS NAME";
  724. ScopedSpinLock lock(s_mm_lock);
  725. for (auto& region : MM.m_kernel_regions) {
  726. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  727. }
  728. }
  729. }