Interpreter.cpp 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Badge.h>
  27. #include <LibJS/AST.h>
  28. #include <LibJS/Interpreter.h>
  29. #include <LibJS/Runtime/ArrayPrototype.h>
  30. #include <LibJS/Runtime/BooleanPrototype.h>
  31. #include <LibJS/Runtime/DatePrototype.h>
  32. #include <LibJS/Runtime/Error.h>
  33. #include <LibJS/Runtime/ErrorPrototype.h>
  34. #include <LibJS/Runtime/FunctionPrototype.h>
  35. #include <LibJS/Runtime/GlobalObject.h>
  36. #include <LibJS/Runtime/LexicalEnvironment.h>
  37. #include <LibJS/Runtime/NativeFunction.h>
  38. #include <LibJS/Runtime/NumberPrototype.h>
  39. #include <LibJS/Runtime/Object.h>
  40. #include <LibJS/Runtime/ObjectPrototype.h>
  41. #include <LibJS/Runtime/Shape.h>
  42. #include <LibJS/Runtime/StringPrototype.h>
  43. #include <LibJS/Runtime/Value.h>
  44. namespace JS {
  45. Interpreter::Interpreter()
  46. : m_heap(*this)
  47. {
  48. m_empty_object_shape = heap().allocate<Shape>();
  49. // These are done first since other prototypes depend on their presence.
  50. m_object_prototype = heap().allocate<ObjectPrototype>();
  51. m_function_prototype = heap().allocate<FunctionPrototype>();
  52. #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName) \
  53. if (!m_##snake_name##_prototype) \
  54. m_##snake_name##_prototype = heap().allocate<PrototypeName>();
  55. JS_ENUMERATE_BUILTIN_TYPES
  56. #undef __JS_ENUMERATE
  57. }
  58. Interpreter::~Interpreter()
  59. {
  60. }
  61. Value Interpreter::run(const Statement& statement, ArgumentVector arguments, ScopeType scope_type)
  62. {
  63. if (statement.is_program()) {
  64. if (m_call_stack.is_empty()) {
  65. CallFrame global_call_fram;
  66. global_call_fram.this_value = m_global_object;
  67. global_call_fram.function_name = "(global execution context)";
  68. global_call_fram.environment = heap().allocate<LexicalEnvironment>();
  69. m_call_stack.append(move(global_call_fram));
  70. }
  71. }
  72. if (!statement.is_scope_node())
  73. return statement.execute(*this);
  74. auto& block = static_cast<const ScopeNode&>(statement);
  75. enter_scope(block, move(arguments), scope_type);
  76. m_last_value = js_undefined();
  77. for (auto& node : block.children()) {
  78. m_last_value = node.execute(*this);
  79. if (m_unwind_until != ScopeType::None)
  80. break;
  81. }
  82. bool did_return = m_unwind_until == ScopeType::Function;
  83. if (m_unwind_until == scope_type)
  84. m_unwind_until = ScopeType::None;
  85. exit_scope(block);
  86. return did_return ? m_last_value : js_undefined();
  87. }
  88. void Interpreter::enter_scope(const ScopeNode& scope_node, ArgumentVector arguments, ScopeType scope_type)
  89. {
  90. if (scope_type == ScopeType::Function) {
  91. m_scope_stack.append({ scope_type, scope_node, false });
  92. return;
  93. }
  94. HashMap<FlyString, Variable> scope_variables_with_declaration_kind;
  95. scope_variables_with_declaration_kind.ensure_capacity(16);
  96. for (auto& declaration : scope_node.variables()) {
  97. for (auto& declarator : declaration.declarations()) {
  98. if (scope_node.is_program())
  99. global_object().put(declarator.id().string(), js_undefined());
  100. else
  101. scope_variables_with_declaration_kind.set(declarator.id().string(), { js_undefined(), declaration.declaration_kind() });
  102. }
  103. }
  104. for (auto& argument : arguments) {
  105. scope_variables_with_declaration_kind.set(argument.name, { argument.value, DeclarationKind::Var });
  106. }
  107. bool pushed_lexical_environment = false;
  108. if (!scope_variables_with_declaration_kind.is_empty()) {
  109. auto* block_lexical_environment = heap().allocate<LexicalEnvironment>(move(scope_variables_with_declaration_kind), current_environment());
  110. m_call_stack.last().environment = block_lexical_environment;
  111. pushed_lexical_environment = true;
  112. }
  113. m_scope_stack.append({ scope_type, scope_node, pushed_lexical_environment });
  114. }
  115. void Interpreter::exit_scope(const ScopeNode& scope_node)
  116. {
  117. while (!m_scope_stack.is_empty()) {
  118. auto popped_scope = m_scope_stack.take_last();
  119. if (popped_scope.pushed_environment)
  120. m_call_stack.last().environment = m_call_stack.last().environment->parent();
  121. if (popped_scope.scope_node.ptr() == &scope_node)
  122. break;
  123. }
  124. // If we unwind all the way, just reset m_unwind_until so that future "return" doesn't break.
  125. if (m_scope_stack.is_empty())
  126. m_unwind_until = ScopeType::None;
  127. }
  128. void Interpreter::set_variable(const FlyString& name, Value value, bool first_assignment)
  129. {
  130. for (auto* environment = current_environment(); environment; environment = environment->parent()) {
  131. auto possible_match = environment->get(name);
  132. if (possible_match.has_value()) {
  133. if (!first_assignment && possible_match.value().declaration_kind == DeclarationKind::Const) {
  134. throw_exception<TypeError>("Assignment to constant variable");
  135. return;
  136. }
  137. environment->set(name, { value, possible_match.value().declaration_kind });
  138. return;
  139. }
  140. }
  141. global_object().put(move(name), move(value));
  142. }
  143. Optional<Value> Interpreter::get_variable(const FlyString& name)
  144. {
  145. for (auto* environment = current_environment(); environment; environment = environment->parent()) {
  146. auto possible_match = environment->get(name);
  147. if (possible_match.has_value())
  148. return possible_match.value().value;
  149. }
  150. return global_object().get(name);
  151. }
  152. void Interpreter::gather_roots(Badge<Heap>, HashTable<Cell*>& roots)
  153. {
  154. roots.set(m_empty_object_shape);
  155. roots.set(m_global_object);
  156. roots.set(m_exception);
  157. #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName) \
  158. roots.set(m_##snake_name##_prototype);
  159. JS_ENUMERATE_BUILTIN_TYPES
  160. #undef __JS_ENUMERATE
  161. if (m_last_value.is_cell())
  162. roots.set(m_last_value.as_cell());
  163. for (auto& call_frame : m_call_stack) {
  164. if (call_frame.this_value.is_cell())
  165. roots.set(call_frame.this_value.as_cell());
  166. for (auto& argument : call_frame.arguments) {
  167. if (argument.is_cell())
  168. roots.set(argument.as_cell());
  169. }
  170. roots.set(call_frame.environment);
  171. }
  172. }
  173. Value Interpreter::call(Function* function, Value this_value, const Vector<Value>& arguments)
  174. {
  175. auto& call_frame = push_call_frame();
  176. call_frame.function_name = function->name();
  177. call_frame.this_value = this_value;
  178. call_frame.arguments = arguments;
  179. call_frame.environment = function->create_environment();
  180. auto result = function->call(*this);
  181. pop_call_frame();
  182. return result;
  183. }
  184. Value Interpreter::throw_exception(Exception* exception)
  185. {
  186. if (exception->value().is_object() && exception->value().as_object().is_error()) {
  187. auto& error = static_cast<Error&>(exception->value().as_object());
  188. dbg() << "Throwing JavaScript Error: " << error.name() << ", " << error.message();
  189. }
  190. m_exception = exception;
  191. unwind(ScopeType::Try);
  192. return {};
  193. }
  194. GlobalObject& Interpreter::global_object()
  195. {
  196. return static_cast<GlobalObject&>(*m_global_object);
  197. }
  198. const GlobalObject& Interpreter::global_object() const
  199. {
  200. return static_cast<const GlobalObject&>(*m_global_object);
  201. }
  202. }