init.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Types.h>
  7. #include <Kernel/Arch/Processor.h>
  8. #include <Kernel/BootInfo.h>
  9. #include <Kernel/Bus/PCI/Access.h>
  10. #include <Kernel/Bus/PCI/Initializer.h>
  11. #include <Kernel/Bus/USB/USBManagement.h>
  12. #include <Kernel/Bus/VirtIO/Device.h>
  13. #include <Kernel/CMOS.h>
  14. #include <Kernel/CommandLine.h>
  15. #include <Kernel/Devices/Audio/Management.h>
  16. #include <Kernel/Devices/DeviceControlDevice.h>
  17. #include <Kernel/Devices/DeviceManagement.h>
  18. #include <Kernel/Devices/FullDevice.h>
  19. #include <Kernel/Devices/HID/HIDManagement.h>
  20. #include <Kernel/Devices/KCOVDevice.h>
  21. #include <Kernel/Devices/MemoryDevice.h>
  22. #include <Kernel/Devices/NullDevice.h>
  23. #include <Kernel/Devices/PCISerialDevice.h>
  24. #include <Kernel/Devices/RandomDevice.h>
  25. #include <Kernel/Devices/SelfTTYDevice.h>
  26. #include <Kernel/Devices/SerialDevice.h>
  27. #include <Kernel/Devices/VMWareBackdoor.h>
  28. #include <Kernel/Devices/ZeroDevice.h>
  29. #include <Kernel/FileSystem/Ext2FileSystem.h>
  30. #include <Kernel/FileSystem/SysFS.h>
  31. #include <Kernel/FileSystem/VirtualFileSystem.h>
  32. #include <Kernel/Firmware/ACPI/Initialize.h>
  33. #include <Kernel/Firmware/ACPI/Parser.h>
  34. #include <Kernel/Firmware/SysFSFirmware.h>
  35. #include <Kernel/Graphics/Console/BootFramebufferConsole.h>
  36. #include <Kernel/Graphics/Console/TextModeConsole.h>
  37. #include <Kernel/Graphics/GraphicsManagement.h>
  38. #include <Kernel/Heap/kmalloc.h>
  39. #include <Kernel/Interrupts/APIC.h>
  40. #include <Kernel/Interrupts/InterruptManagement.h>
  41. #include <Kernel/Interrupts/PIC.h>
  42. #include <Kernel/KSyms.h>
  43. #include <Kernel/Memory/MemoryManager.h>
  44. #include <Kernel/Multiboot.h>
  45. #include <Kernel/Net/NetworkTask.h>
  46. #include <Kernel/Net/NetworkingManagement.h>
  47. #include <Kernel/Panic.h>
  48. #include <Kernel/Prekernel/Prekernel.h>
  49. #include <Kernel/Process.h>
  50. #include <Kernel/ProcessExposed.h>
  51. #include <Kernel/RTC.h>
  52. #include <Kernel/Random.h>
  53. #include <Kernel/Scheduler.h>
  54. #include <Kernel/Sections.h>
  55. #include <Kernel/Storage/StorageManagement.h>
  56. #include <Kernel/TTY/ConsoleManagement.h>
  57. #include <Kernel/TTY/PTYMultiplexer.h>
  58. #include <Kernel/TTY/VirtualConsole.h>
  59. #include <Kernel/Tasks/FinalizerTask.h>
  60. #include <Kernel/Tasks/SyncTask.h>
  61. #include <Kernel/Time/TimeManagement.h>
  62. #include <Kernel/WorkQueue.h>
  63. #include <Kernel/kstdio.h>
  64. // Defined in the linker script
  65. typedef void (*ctor_func_t)();
  66. extern ctor_func_t start_heap_ctors[];
  67. extern ctor_func_t end_heap_ctors[];
  68. extern ctor_func_t start_ctors[];
  69. extern ctor_func_t end_ctors[];
  70. extern size_t __stack_chk_guard;
  71. READONLY_AFTER_INIT size_t __stack_chk_guard __attribute__((used));
  72. extern "C" u8 start_of_safemem_text[];
  73. extern "C" u8 end_of_safemem_text[];
  74. extern "C" u8 start_of_safemem_atomic_text[];
  75. extern "C" u8 end_of_safemem_atomic_text[];
  76. extern "C" u8 end_of_kernel_image[];
  77. multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
  78. size_t multiboot_copy_boot_modules_count;
  79. READONLY_AFTER_INIT bool g_in_early_boot;
  80. namespace Kernel {
  81. [[noreturn]] static void init_stage2(void*);
  82. static void setup_serial_debug();
  83. // boot.S expects these functions to exactly have the following signatures.
  84. // We declare them here to ensure their signatures don't accidentally change.
  85. extern "C" void init_finished(u32 cpu) __attribute__((used));
  86. extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
  87. extern "C" [[noreturn]] void init(BootInfo const&);
  88. READONLY_AFTER_INIT VirtualConsole* tty0;
  89. ProcessID g_init_pid { 0 };
  90. static Processor s_bsp_processor; // global but let's keep it "private"
  91. // SerenityOS Kernel C++ entry point :^)
  92. //
  93. // This is where C++ execution begins, after boot.S transfers control here.
  94. //
  95. // The purpose of init() is to start multi-tasking. It does the bare minimum
  96. // amount of work needed to start the scheduler.
  97. //
  98. // Once multi-tasking is ready, we spawn a new thread that starts in the
  99. // init_stage2() function. Initialization continues there.
  100. extern "C" {
  101. READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
  102. READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
  103. READONLY_AFTER_INIT size_t physical_to_virtual_offset;
  104. READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
  105. READONLY_AFTER_INIT FlatPtr default_kernel_load_base;
  106. READONLY_AFTER_INIT FlatPtr kernel_load_base;
  107. #if ARCH(X86_64)
  108. READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
  109. #endif
  110. READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
  111. READONLY_AFTER_INIT PhysicalAddress boot_pd0;
  112. READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
  113. READONLY_AFTER_INIT PageTableEntry* boot_pd_kernel_pt1023;
  114. READONLY_AFTER_INIT const char* kernel_cmdline;
  115. READONLY_AFTER_INIT u32 multiboot_flags;
  116. READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
  117. READONLY_AFTER_INIT size_t multiboot_memory_map_count;
  118. READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
  119. READONLY_AFTER_INIT size_t multiboot_modules_count;
  120. READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
  121. READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
  122. READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
  123. READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
  124. READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
  125. READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
  126. }
  127. Atomic<Graphics::Console*> g_boot_console;
  128. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init(BootInfo const& boot_info)
  129. {
  130. g_in_early_boot = true;
  131. start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
  132. end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
  133. physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
  134. kernel_mapping_base = boot_info.kernel_mapping_base;
  135. default_kernel_load_base = boot_info.default_kernel_load_base;
  136. kernel_load_base = boot_info.kernel_load_base;
  137. #if ARCH(X86_64)
  138. gdt64ptr = boot_info.gdt64ptr;
  139. code64_sel = boot_info.code64_sel;
  140. boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
  141. #endif
  142. boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
  143. boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
  144. boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
  145. boot_pd_kernel_pt1023 = (PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
  146. kernel_cmdline = (char const*)boot_info.kernel_cmdline;
  147. multiboot_flags = boot_info.multiboot_flags;
  148. multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
  149. multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
  150. multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
  151. multiboot_modules_count = boot_info.multiboot_modules_count;
  152. multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
  153. multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
  154. multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
  155. multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
  156. multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
  157. multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
  158. setup_serial_debug();
  159. // We need to copy the command line before kmalloc is initialized,
  160. // as it may overwrite parts of multiboot!
  161. CommandLine::early_initialize(kernel_cmdline);
  162. memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
  163. multiboot_copy_boot_modules_count = multiboot_modules_count;
  164. s_bsp_processor.early_initialize(0);
  165. // Invoke the constructors needed for the kernel heap
  166. for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
  167. (*ctor)();
  168. kmalloc_init();
  169. load_kernel_symbol_table();
  170. s_bsp_processor.initialize(0);
  171. CommandLine::initialize();
  172. Memory::MemoryManager::initialize(0);
  173. // NOTE: If the bootloader provided a framebuffer, then set up an initial console.
  174. // If the bootloader didn't provide a framebuffer, then set up an initial text console.
  175. // We do so we can see the output on the screen as soon as possible.
  176. if (!kernel_command_line().is_early_boot_console_disabled()) {
  177. if (!multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
  178. g_boot_console = &try_make_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
  179. } else {
  180. g_boot_console = &Graphics::TextModeConsole::initialize().leak_ref();
  181. }
  182. }
  183. dmesgln("Starting SerenityOS...");
  184. DeviceManagement::initialize();
  185. SysFSComponentRegistry::initialize();
  186. DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
  187. DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
  188. DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
  189. MM.unmap_prekernel();
  190. // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
  191. VERIFY(+start_of_safemem_text != +end_of_safemem_text);
  192. VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
  193. // Invoke all static global constructors in the kernel.
  194. // Note that we want to do this as early as possible.
  195. for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
  196. (*ctor)();
  197. InterruptManagement::initialize();
  198. ACPI::initialize();
  199. // Initialize TimeManagement before using randomness!
  200. TimeManagement::initialize(0);
  201. __stack_chk_guard = get_fast_random<size_t>();
  202. ProcFSComponentRegistry::initialize();
  203. Process::initialize();
  204. Scheduler::initialize();
  205. if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  206. // We must set up the AP boot environment before switching to a kernel process,
  207. // as pages below address USER_RANGE_BASE are only accesible through the kernel
  208. // page directory.
  209. APIC::the().setup_ap_boot_environment();
  210. }
  211. {
  212. RefPtr<Thread> init_stage2_thread;
  213. (void)Process::create_kernel_process(init_stage2_thread, KString::must_create("init_stage2"), init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No);
  214. // We need to make sure we drop the reference for init_stage2_thread
  215. // before calling into Scheduler::start, otherwise we will have a
  216. // dangling Thread that never gets cleaned up
  217. }
  218. Scheduler::start();
  219. VERIFY_NOT_REACHED();
  220. }
  221. //
  222. // This is where C++ execution begins for APs, after boot.S transfers control here.
  223. //
  224. // The purpose of init_ap() is to initialize APs for multi-tasking.
  225. //
  226. extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
  227. {
  228. processor_info->early_initialize(cpu);
  229. processor_info->initialize(cpu);
  230. Memory::MemoryManager::initialize(cpu);
  231. Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
  232. Scheduler::start();
  233. VERIFY_NOT_REACHED();
  234. }
  235. //
  236. // This method is called once a CPU enters the scheduler and its idle thread
  237. // At this point the initial boot stack can be freed
  238. //
  239. extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
  240. {
  241. if (cpu == 0) {
  242. // TODO: we can reuse the boot stack, maybe for kmalloc()?
  243. } else {
  244. APIC::the().init_finished(cpu);
  245. TimeManagement::initialize(cpu);
  246. }
  247. }
  248. void init_stage2(void*)
  249. {
  250. // This is a little bit of a hack. We can't register our process at the time we're
  251. // creating it, but we need to be registered otherwise finalization won't be happy.
  252. // The colonel process gets away without having to do this because it never exits.
  253. Process::register_new(Process::current());
  254. WorkQueue::initialize();
  255. if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
  256. // We can't start the APs until we have a scheduler up and running.
  257. // We need to be able to process ICI messages, otherwise another
  258. // core may send too many and end up deadlocking once the pool is
  259. // exhausted
  260. APIC::the().boot_aps();
  261. }
  262. // Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
  263. PCI::initialize();
  264. if (!PCI::Access::is_disabled()) {
  265. PCISerialDevice::detect();
  266. }
  267. VirtualFileSystem::initialize();
  268. if (!get_serial_debug())
  269. (void)SerialDevice::must_create(0).leak_ref();
  270. (void)SerialDevice::must_create(1).leak_ref();
  271. (void)SerialDevice::must_create(2).leak_ref();
  272. (void)SerialDevice::must_create(3).leak_ref();
  273. VMWareBackdoor::the(); // don't wait until first mouse packet
  274. HIDManagement::initialize();
  275. GraphicsManagement::the().initialize();
  276. ConsoleManagement::the().initialize();
  277. SyncTask::spawn();
  278. FinalizerTask::spawn();
  279. auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
  280. if (!PCI::Access::is_disabled()) {
  281. USB::USBManagement::initialize();
  282. }
  283. FirmwareSysFSDirectory::initialize();
  284. if (!PCI::Access::is_disabled()) {
  285. VirtIO::detect();
  286. }
  287. NetworkingManagement::the().initialize();
  288. Syscall::initialize();
  289. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  290. (void)KCOVDevice::must_create().leak_ref();
  291. #endif
  292. (void)MemoryDevice::must_create().leak_ref();
  293. (void)ZeroDevice::must_create().leak_ref();
  294. (void)FullDevice::must_create().leak_ref();
  295. (void)RandomDevice::must_create().leak_ref();
  296. (void)SelfTTYDevice::must_create().leak_ref();
  297. PTYMultiplexer::initialize();
  298. AudioManagement::the().initialize();
  299. StorageManagement::the().initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
  300. if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
  301. PANIC("VirtualFileSystem::mount_root failed");
  302. }
  303. // Switch out of early boot mode.
  304. g_in_early_boot = false;
  305. // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
  306. MM.protect_readonly_after_init_memory();
  307. // NOTE: Everything in the .ksyms section becomes read-only after this point.
  308. MM.protect_ksyms_after_init();
  309. // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
  310. MM.unmap_text_after_init();
  311. // FIXME: It would be nicer to set the mode from userspace.
  312. // FIXME: It would be smarter to not hardcode that the first tty is the only graphical one
  313. ConsoleManagement::the().first_tty()->set_graphical(GraphicsManagement::the().framebuffer_devices_exist());
  314. RefPtr<Thread> thread;
  315. auto userspace_init = kernel_command_line().userspace_init();
  316. auto init_args = kernel_command_line().userspace_init_args();
  317. auto init_or_error = Process::try_create_user_process(thread, userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
  318. if (init_or_error.is_error())
  319. PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
  320. g_init_pid = init_or_error.value()->pid();
  321. thread->set_priority(THREAD_PRIORITY_HIGH);
  322. if (boot_profiling) {
  323. dbgln("Starting full system boot profiling");
  324. MutexLocker mutex_locker(Process::current().big_lock());
  325. const auto enable_all = ~(u64)0;
  326. auto result = Process::current().sys$profiling_enable(-1, reinterpret_cast<FlatPtr>(&enable_all));
  327. VERIFY(!result.is_error());
  328. }
  329. NetworkTask::spawn();
  330. Process::current().sys$exit(0);
  331. VERIFY_NOT_REACHED();
  332. }
  333. UNMAP_AFTER_INIT void setup_serial_debug()
  334. {
  335. // serial_debug will output all the dbgln() data to COM1 at
  336. // 8-N-1 57600 baud. this is particularly useful for debugging the boot
  337. // process on live hardware.
  338. if (StringView(kernel_cmdline).contains("serial_debug")) {
  339. set_serial_debug(true);
  340. }
  341. }
  342. // Define some Itanium C++ ABI methods to stop the linker from complaining.
  343. // If we actually call these something has gone horribly wrong
  344. void* __dso_handle __attribute__((visibility("hidden")));
  345. }