123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494 |
- /*
- * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
- *
- * SPDX-License-Identifier: BSD-2-Clause
- */
- #include "SoftwareRasterizer.h"
- #include <AK/Function.h>
- #include <LibGfx/Painter.h>
- #include <LibGfx/Vector2.h>
- #include <LibGfx/Vector3.h>
- namespace GL {
- using IntVector2 = Gfx::Vector2<int>;
- using IntVector3 = Gfx::Vector3<int>;
- static constexpr int RASTERIZER_BLOCK_SIZE = 16;
- constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
- {
- return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
- }
- template<typename T>
- constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector3& barycentric_coords)
- {
- return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
- }
- static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
- {
- auto clamped = v.clamped(0, 1);
- u8 r = clamped.x() * 255;
- u8 g = clamped.y() * 255;
- u8 b = clamped.z() * 255;
- u8 a = clamped.w() * 255;
- return a << 24 | b << 16 | g << 8 | r;
- }
- static FloatVector4 to_vec4(Gfx::RGBA32 rgba)
- {
- return {
- (rgba & 0xff) / 255.0f,
- ((rgba >> 8) & 0xff) / 255.0f,
- ((rgba >> 16) & 0xff) / 255.0f,
- ((rgba >> 24) & 0xff) / 255.0f
- };
- }
- static constexpr void setup_blend_factors(GLenum mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color)
- {
- constant = { 0.0f, 0.0f, 0.0f, 0.0f };
- src_alpha = 0;
- dst_alpha = 0;
- src_color = 0;
- dst_color = 0;
- switch (mode) {
- case GL_ZERO:
- break;
- case GL_ONE:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- break;
- case GL_SRC_COLOR:
- src_color = 1;
- break;
- case GL_ONE_MINUS_SRC_COLOR:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- src_color = -1;
- break;
- case GL_SRC_ALPHA:
- src_alpha = 1;
- break;
- case GL_ONE_MINUS_SRC_ALPHA:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- src_alpha = -1;
- break;
- case GL_DST_ALPHA:
- dst_alpha = -1;
- break;
- case GL_ONE_MINUS_DST_ALPHA:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- dst_alpha = -1;
- break;
- case GL_DST_COLOR:
- dst_color = 1;
- break;
- case GL_ONE_MINUS_DST_COLOR:
- constant = { 1.0f, 1.0f, 1.0f, 1.0f };
- dst_color = -1;
- break;
- case GL_SRC_ALPHA_SATURATE:
- // FIXME: How do we implement this?
- break;
- default:
- VERIFY_NOT_REACHED();
- }
- }
- template<typename PS>
- static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader)
- {
- // Since the algorithm is based on blocks of uniform size, we need
- // to ensure that our render_target size is actually a multiple of the block size
- VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
- VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
- // Calculate area of the triangle for later tests
- IntVector2 v0 { (int)triangle.vertices[0].x, (int)triangle.vertices[0].y };
- IntVector2 v1 { (int)triangle.vertices[1].x, (int)triangle.vertices[1].y };
- IntVector2 v2 { (int)triangle.vertices[2].x, (int)triangle.vertices[2].y };
- int area = edge_function(v0, v1, v2);
- if (area == 0)
- return;
- float one_over_area = 1.0f / area;
- FloatVector4 src_constant {};
- float src_factor_src_alpha = 0;
- float src_factor_dst_alpha = 0;
- float src_factor_src_color = 0;
- float src_factor_dst_color = 0;
- FloatVector4 dst_constant {};
- float dst_factor_src_alpha = 0;
- float dst_factor_dst_alpha = 0;
- float dst_factor_src_color = 0;
- float dst_factor_dst_color = 0;
- if (options.enable_blending) {
- setup_blend_factors(
- options.blend_source_factor,
- src_constant,
- src_factor_src_alpha,
- src_factor_dst_alpha,
- src_factor_src_color,
- src_factor_dst_color);
- setup_blend_factors(
- options.blend_source_factor,
- dst_constant,
- dst_factor_src_alpha,
- dst_factor_dst_alpha,
- dst_factor_src_color,
- dst_factor_dst_color);
- }
- // Obey top-left rule:
- // This sets up "zero" for later pixel coverage tests.
- // Depending on where on the triangle the edge is located
- // it is either tested against 0 or 1, effectively
- // turning "< 0" into "<= 0"
- IntVector3 zero { 1, 1, 1 };
- if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x()))
- zero.set_z(0);
- if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x()))
- zero.set_x(0);
- if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x()))
- zero.set_y(0);
- // This function calculates the 3 edge values for the pixel relative to the triangle.
- auto calculate_edge_values = [v0, v1, v2](const IntVector2& p) -> IntVector3 {
- return {
- edge_function(v1, v2, p),
- edge_function(v2, v0, p),
- edge_function(v0, v1, p),
- };
- };
- // This function tests whether a point as identified by its 3 edge values lies within the triangle
- auto test_point = [zero](const IntVector3& edges) -> bool {
- return edges.x() >= zero.x()
- && edges.y() >= zero.y()
- && edges.z() >= zero.z();
- };
- // Calculate block-based bounds
- // clang-format off
- const int bx0 = max(0, min(min(v0.x(), v1.x()), v2.x()) ) / RASTERIZER_BLOCK_SIZE;
- const int bx1 = min(render_target.width(), max(max(v0.x(), v1.x()), v2.x()) + RASTERIZER_BLOCK_SIZE - 1) / RASTERIZER_BLOCK_SIZE;
- const int by0 = max(0, min(min(v0.y(), v1.y()), v2.y()) ) / RASTERIZER_BLOCK_SIZE;
- const int by1 = min(render_target.height(), max(max(v0.y(), v1.y()), v2.y()) + RASTERIZER_BLOCK_SIZE - 1) / RASTERIZER_BLOCK_SIZE;
- // clang-format on
- static_assert(RASTERIZER_BLOCK_SIZE < sizeof(int) * 8, "RASTERIZER_BLOCK_SIZE must be smaller than the pixel_mask's width in bits");
- int pixel_mask[RASTERIZER_BLOCK_SIZE];
- FloatVector4 pixel_buffer[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE];
- // Iterate over all blocks within the bounds of the triangle
- for (int by = by0; by < by1; by++) {
- for (int bx = bx0; bx < bx1; bx++) {
- // Edge values of the 4 block corners
- // clang-format off
- auto b0 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE });
- auto b1 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE });
- auto b2 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
- auto b3 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
- // clang-format on
- // If the whole block is outside any of the triangle edges we can discard it completely
- // We test this by and'ing the relevant edge function values together for all block corners
- // and checking if the negative sign bit is set for all of them
- if ((b0.x() & b1.x() & b2.x() & b3.x()) & 0x80000000)
- continue;
- if ((b0.y() & b1.y() & b2.y() & b3.y()) & 0x80000000)
- continue;
- if ((b0.z() & b1.z() & b2.z() & b3.z()) & 0x80000000)
- continue;
- // edge value derivatives
- auto dbdx = (b1 - b0) / RASTERIZER_BLOCK_SIZE;
- auto dbdy = (b2 - b0) / RASTERIZER_BLOCK_SIZE;
- // step edge value after each horizontal span: 1 down, BLOCK_SIZE left
- auto step_y = dbdy - dbdx * RASTERIZER_BLOCK_SIZE;
- int x0 = bx * RASTERIZER_BLOCK_SIZE;
- int y0 = by * RASTERIZER_BLOCK_SIZE;
- // Generate the coverage mask
- if (test_point(b0) && test_point(b1) && test_point(b2) && test_point(b3)) {
- // The block is fully contained within the triangle. Fill the mask with all 1s
- for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
- pixel_mask[y] = -1;
- }
- } else {
- // The block overlaps at least one triangle edge.
- // We need to test coverage of every pixel within the block.
- auto coords = b0;
- for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
- pixel_mask[y] = 0;
- for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx) {
- if (test_point(coords))
- pixel_mask[y] |= 1 << x;
- }
- }
- }
- // AND the depth mask onto the coverage mask
- if (options.enable_depth_test) {
- int z_pass_count = 0;
- auto coords = b0;
- for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
- if (pixel_mask[y] == 0) {
- coords += dbdx * RASTERIZER_BLOCK_SIZE;
- continue;
- }
- auto* depth = &depth_buffer.scanline(y0 + y)[x0];
- for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, depth++) {
- if (~pixel_mask[y] & (1 << x))
- continue;
- auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
- float z = interpolate(triangle.vertices[0].z, triangle.vertices[1].z, triangle.vertices[2].z, barycentric);
- if (z >= *depth) {
- pixel_mask[y] ^= 1 << x;
- continue;
- }
- *depth = z;
- z_pass_count++;
- }
- }
- // Nice, no pixels passed the depth test -> block rejected by early z
- if (z_pass_count == 0)
- continue;
- }
- // Draw the pixels according to the previously generated mask
- auto coords = b0;
- for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
- if (pixel_mask[y] == 0) {
- coords += dbdx * RASTERIZER_BLOCK_SIZE;
- continue;
- }
- auto* pixel = pixel_buffer[y];
- for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, pixel++) {
- if (~pixel_mask[y] & (1 << x))
- continue;
- // Perspective correct barycentric coordinates
- auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
- float interpolated_reciprocal_w = interpolate(triangle.vertices[0].w, triangle.vertices[1].w, triangle.vertices[2].w, barycentric);
- float interpolated_w = 1 / interpolated_reciprocal_w;
- barycentric = barycentric * FloatVector3(triangle.vertices[0].w, triangle.vertices[1].w, triangle.vertices[2].w) * interpolated_w;
- // FIXME: make this more generic. We want to interpolate more than just color and uv
- FloatVector4 vertex_color;
- if (options.shade_smooth) {
- vertex_color = interpolate(
- FloatVector4(triangle.vertices[0].r, triangle.vertices[0].g, triangle.vertices[0].b, triangle.vertices[0].a),
- FloatVector4(triangle.vertices[1].r, triangle.vertices[1].g, triangle.vertices[1].b, triangle.vertices[1].a),
- FloatVector4(triangle.vertices[2].r, triangle.vertices[2].g, triangle.vertices[2].b, triangle.vertices[2].a),
- barycentric);
- } else {
- vertex_color = { triangle.vertices[0].r, triangle.vertices[0].g, triangle.vertices[0].b, triangle.vertices[0].a };
- }
- auto uv = interpolate(
- FloatVector2(triangle.vertices[0].u, triangle.vertices[0].v),
- FloatVector2(triangle.vertices[1].u, triangle.vertices[1].v),
- FloatVector2(triangle.vertices[2].u, triangle.vertices[2].v),
- barycentric);
- *pixel = pixel_shader(uv, vertex_color);
- }
- }
- if (options.enable_alpha_test && options.alpha_test_func != GL_ALWAYS) {
- // FIXME: I'm not sure if this is the right place to test this.
- // If we tested this right at the beginning of our rasterizer routine
- // we could skip a lot of work but the GL spec might disagree.
- if (options.alpha_test_func == GL_NEVER)
- continue;
- for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
- auto src = pixel_buffer[y];
- for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++) {
- if (~pixel_mask[y] & (1 << x))
- continue;
- bool passed = true;
- switch (options.alpha_test_func) {
- case GL_LESS:
- passed = src->w() < options.alpha_test_ref_value;
- break;
- case GL_EQUAL:
- passed = src->w() == options.alpha_test_ref_value;
- break;
- case GL_LEQUAL:
- passed = src->w() <= options.alpha_test_ref_value;
- break;
- case GL_GREATER:
- passed = src->w() > options.alpha_test_ref_value;
- break;
- case GL_NOTEQUAL:
- passed = src->w() != options.alpha_test_ref_value;
- break;
- case GL_GEQUAL:
- passed = src->w() >= options.alpha_test_ref_value;
- break;
- }
- if (!passed)
- pixel_mask[y] ^= (1 << x);
- }
- }
- }
- if (options.enable_blending) {
- // Blend color values from pixel_buffer into render_target
- for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
- auto src = pixel_buffer[y];
- auto dst = &render_target.scanline(y + y0)[x0];
- for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
- if (~pixel_mask[y] & (1 << x))
- continue;
- auto float_dst = to_vec4(*dst);
- auto src_factor = src_constant
- + *src * src_factor_src_color
- + FloatVector4(src->w(), src->w(), src->w(), src->w()) * src_factor_src_alpha
- + float_dst * src_factor_dst_color
- + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * src_factor_dst_alpha;
- auto dst_factor = dst_constant
- + *src * dst_factor_src_color
- + FloatVector4(src->w(), src->w(), src->w(), src->w()) * dst_factor_src_alpha
- + float_dst * dst_factor_dst_color
- + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * dst_factor_dst_alpha;
- *dst = to_rgba32(*src * src_factor + float_dst * dst_factor);
- }
- }
- } else {
- // Copy color values from pixel_buffer into render_target
- for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
- auto src = pixel_buffer[y];
- auto dst = &render_target.scanline(y + y0)[x0];
- for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
- if (~pixel_mask[y] & (1 << x))
- continue;
- *dst = to_rgba32(*src);
- }
- }
- }
- }
- }
- }
- static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
- {
- int width = ((min_size.width() + step - 1) / step) * step;
- int height = ((min_size.height() + step - 1) / step) * step;
- return { width, height };
- }
- SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size)
- : m_render_target { Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)) }
- , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
- {
- }
- void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle, const Texture& texture)
- {
- rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [&texture](const FloatVector2& uv, const FloatVector4& color) -> FloatVector4 {
- // TODO: We'd do some kind of multitexturing/blending here
- // Construct a vector for the texel we want to sample
- FloatVector4 texel = texture.sample_texel(uv);
- return texel * color;
- });
- }
- void SoftwareRasterizer::resize(const Gfx::IntSize& min_size)
- {
- wait_for_all_threads();
- m_render_target = Gfx::Bitmap::create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE));
- m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
- }
- void SoftwareRasterizer::clear_color(const FloatVector4& color)
- {
- wait_for_all_threads();
- uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
- uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
- uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
- uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
- m_render_target->fill(Gfx::Color(r, g, b, a));
- }
- void SoftwareRasterizer::clear_depth(float depth)
- {
- wait_for_all_threads();
- m_depth_buffer->clear(depth);
- }
- void SoftwareRasterizer::blit_to(Gfx::Bitmap& target)
- {
- wait_for_all_threads();
- Gfx::Painter painter { target };
- painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
- }
- void SoftwareRasterizer::wait_for_all_threads() const
- {
- // FIXME: Wait for all render threads to finish when multithreading is being implemented
- }
- void SoftwareRasterizer::set_options(const RasterizerOptions& options)
- {
- wait_for_all_threads();
- m_options = options;
- // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
- }
- Gfx::RGBA32 SoftwareRasterizer::get_backbuffer_pixel(int x, int y)
- {
- // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
- if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
- return 0;
- return m_render_target->scanline(y)[x];
- }
- float SoftwareRasterizer::get_depthbuffer_value(int x, int y)
- {
- // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
- if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
- return 1.0f;
- return m_depth_buffer->scanline(y)[x];
- }
- }
|