MemoryManager.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. //#define MM_DEBUG
  10. //#define PAGE_FAULT_DEBUG
  11. #define SCRUB_DEALLOCATED_PAGE_TABLES
  12. static MemoryManager* s_the;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. m_kernel_page_directory = (PageDirectory*)0x4000;
  20. m_pageTableZero = (dword*)0x6000;
  21. m_pageTableOne = (dword*)0x7000;
  22. m_next_laddr.set(0xd0000000);
  23. initializePaging();
  24. }
  25. MemoryManager::~MemoryManager()
  26. {
  27. }
  28. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  29. {
  30. memset(&page_directory, 0, sizeof(PageDirectory));
  31. page_directory.entries[0] = m_kernel_page_directory->entries[0];
  32. page_directory.entries[1] = m_kernel_page_directory->entries[1];
  33. }
  34. void MemoryManager::release_page_directory(PageDirectory& page_directory)
  35. {
  36. ASSERT_INTERRUPTS_DISABLED();
  37. #ifdef MM_DEBUG
  38. dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
  39. #endif
  40. for (size_t i = 0; i < 1024; ++i) {
  41. auto& page_table = page_directory.physical_pages[i];
  42. if (!page_table.is_null()) {
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: deallocating user page table P%x\n", page_table->paddr().get());
  45. #endif
  46. deallocate_page_table(page_directory, i);
  47. }
  48. }
  49. #ifdef SCRUB_DEALLOCATED_PAGE_TABLES
  50. memset(&page_directory, 0xc9, sizeof(PageDirectory));
  51. #endif
  52. }
  53. void MemoryManager::initializePaging()
  54. {
  55. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  56. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  57. memset(m_pageTableZero, 0, PAGE_SIZE);
  58. memset(m_pageTableOne, 0, PAGE_SIZE);
  59. memset(m_kernel_page_directory, 0, sizeof(PageDirectory));
  60. #ifdef MM_DEBUG
  61. dbgprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
  62. #endif
  63. // Make null dereferences crash.
  64. protectMap(LinearAddress(0), PAGE_SIZE);
  65. // The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
  66. create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
  67. // The physical pages 4 MB through 8 MB are available for allocation.
  68. for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
  69. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));
  70. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
  71. asm volatile(
  72. "movl %cr0, %eax\n"
  73. "orl $0x80000001, %eax\n"
  74. "movl %eax, %cr0\n"
  75. );
  76. }
  77. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  78. {
  79. auto& page_directory_physical_ptr = page_directory.physical_pages[index];
  80. ASSERT(!page_directory_physical_ptr);
  81. auto physical_page = allocate_physical_page();
  82. if (!physical_page)
  83. return nullptr;
  84. dword address = physical_page->paddr().get();
  85. create_identity_mapping(LinearAddress(address), PAGE_SIZE);
  86. memset((void*)address, 0, PAGE_SIZE);
  87. page_directory.physical_pages[index] = move(physical_page);
  88. return page_directory.physical_pages[index];
  89. }
  90. void MemoryManager::deallocate_page_table(PageDirectory& page_directory, unsigned index)
  91. {
  92. auto& physical_page = page_directory.physical_pages[index];
  93. ASSERT(physical_page);
  94. //FIXME: This line is buggy and effectful somehow :(
  95. //ASSERT(!m_free_physical_pages.contains_slow(physical_page));
  96. for (size_t i = 0; i < MM.m_free_physical_pages.size(); ++i) {
  97. ASSERT(MM.m_free_physical_pages[i].ptr() != physical_page.ptr());
  98. }
  99. remove_identity_mapping(LinearAddress(physical_page->paddr().get()), PAGE_SIZE);
  100. page_directory.physical_pages[index] = nullptr;
  101. }
  102. void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
  103. {
  104. InterruptDisabler disabler;
  105. // FIXME: ASSERT(laddr is 4KB aligned);
  106. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  107. auto pte_address = laddr.offset(offset);
  108. auto pte = ensurePTE(m_kernel_page_directory, pte_address);
  109. pte.setPhysicalPageBase(0);
  110. pte.setUserAllowed(false);
  111. pte.setPresent(true);
  112. pte.setWritable(true);
  113. flushTLB(pte_address);
  114. }
  115. }
  116. auto MemoryManager::ensurePTE(PageDirectory* page_directory, LinearAddress laddr) -> PageTableEntry
  117. {
  118. ASSERT_INTERRUPTS_DISABLED();
  119. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  120. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  121. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory->entries[page_directory_index]);
  122. if (!pde.isPresent()) {
  123. #ifdef MM_DEBUG
  124. dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
  125. #endif
  126. if (page_directory_index == 0) {
  127. ASSERT(page_directory == m_kernel_page_directory);
  128. pde.setPageTableBase((dword)m_pageTableZero);
  129. pde.setUserAllowed(false);
  130. pde.setPresent(true);
  131. pde.setWritable(true);
  132. } else if (page_directory_index == 1) {
  133. ASSERT(page_directory == m_kernel_page_directory);
  134. pde.setPageTableBase((dword)m_pageTableOne);
  135. pde.setUserAllowed(false);
  136. pde.setPresent(true);
  137. pde.setWritable(true);
  138. } else {
  139. auto page_table = allocate_page_table(*page_directory, page_directory_index);
  140. #ifdef MM_DEBUG
  141. dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
  142. page_directory,
  143. page_directory == m_kernel_page_directory ? "Kernel" : "User",
  144. page_directory_index,
  145. laddr.get(),
  146. page_table->paddr().get());
  147. #endif
  148. pde.setPageTableBase(page_table->paddr().get());
  149. pde.setUserAllowed(true);
  150. pde.setPresent(true);
  151. pde.setWritable(true);
  152. page_directory->physical_pages[page_directory_index] = move(page_table);
  153. }
  154. }
  155. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  156. }
  157. void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
  158. {
  159. InterruptDisabler disabler;
  160. // FIXME: ASSERT(linearAddress is 4KB aligned);
  161. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  162. auto pteAddress = linearAddress.offset(offset);
  163. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  164. pte.setPhysicalPageBase(pteAddress.get());
  165. pte.setUserAllowed(false);
  166. pte.setPresent(false);
  167. pte.setWritable(false);
  168. flushTLB(pteAddress);
  169. }
  170. }
  171. void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
  172. {
  173. InterruptDisabler disabler;
  174. // FIXME: ASSERT(laddr is 4KB aligned);
  175. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  176. auto pteAddress = laddr.offset(offset);
  177. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  178. pte.setPhysicalPageBase(pteAddress.get());
  179. pte.setUserAllowed(false);
  180. pte.setPresent(true);
  181. pte.setWritable(true);
  182. flushTLB(pteAddress);
  183. }
  184. }
  185. void MemoryManager::initialize()
  186. {
  187. s_the = new MemoryManager;
  188. }
  189. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  190. {
  191. ASSERT_INTERRUPTS_DISABLED();
  192. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  193. for (auto& region : process.m_regions) {
  194. if (region->contains(laddr))
  195. return region.ptr();
  196. }
  197. kprintf("%s(%u) Couldn't find region for L%x\n", process.name().characters(), process.pid(), laddr.get());
  198. return nullptr;
  199. }
  200. bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
  201. {
  202. ASSERT_INTERRUPTS_DISABLED();
  203. auto& vmo = region.vmo();
  204. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  205. #ifdef PAGE_FAULT_DEBUG
  206. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  207. #endif
  208. region.cow_map.set(page_index_in_region, false);
  209. remap_region_page(process.m_page_directory, region, page_index_in_region, true);
  210. return true;
  211. }
  212. #ifdef PAGE_FAULT_DEBUG
  213. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  214. #endif
  215. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  216. auto physical_page = allocate_physical_page();
  217. byte* dest_ptr = quickmap_page(*physical_page);
  218. const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  219. #ifdef PAGE_FAULT_DEBUG
  220. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  221. #endif
  222. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  223. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  224. unquickmap_page();
  225. region.cow_map.set(page_index_in_region, false);
  226. remap_region_page(process.m_page_directory, region, page_index_in_region, true);
  227. return true;
  228. }
  229. bool Region::page_in(PageDirectory& page_directory)
  230. {
  231. ASSERT(!vmo().is_anonymous());
  232. ASSERT(vmo().vnode());
  233. #ifdef MM_DEBUG
  234. dbgprintf("MM: page_in %u pages\n", page_count());
  235. #endif
  236. for (size_t i = 0; i < page_count(); ++i) {
  237. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  238. if (vmo_page.is_null()) {
  239. bool success = MM.page_in_from_vnode(page_directory, *this, i);
  240. if (!success)
  241. return false;
  242. }
  243. MM.remap_region_page(&page_directory, *this, i, true);
  244. }
  245. return true;
  246. }
  247. bool MemoryManager::page_in_from_vnode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  248. {
  249. auto& vmo = region.vmo();
  250. ASSERT(!vmo.is_anonymous());
  251. ASSERT(vmo.vnode());
  252. auto& vnode = *vmo.vnode();
  253. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  254. ASSERT(vmo_page.is_null());
  255. vmo_page = allocate_physical_page();
  256. if (vmo_page.is_null()) {
  257. kprintf("MM: page_in_from_vnode was unable to allocate a physical page\n");
  258. return false;
  259. }
  260. remap_region_page(&page_directory, region, page_index_in_region, true);
  261. byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  262. #ifdef MM_DEBUG
  263. dbgprintf("MM: page_in_from_vnode ready to read from vnode, will write to L%x!\n", dest_ptr);
  264. #endif
  265. sti(); // Oh god here we go...
  266. ASSERT(vnode.core_inode());
  267. auto nread = vnode.core_inode()->read_bytes(vmo.vnode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
  268. if (nread < 0) {
  269. kprintf("MM: page_in_from_vnode had error (%d) while reading!\n", nread);
  270. return false;
  271. }
  272. if (nread < PAGE_SIZE) {
  273. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  274. memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
  275. }
  276. cli();
  277. return true;
  278. }
  279. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  280. {
  281. ASSERT_INTERRUPTS_DISABLED();
  282. #ifdef PAGE_FAULT_DEBUG
  283. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  284. #endif
  285. auto* region = region_from_laddr(*current, fault.laddr());
  286. if (!region) {
  287. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  288. return PageFaultResponse::ShouldCrash;
  289. }
  290. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  291. if (fault.is_not_present()) {
  292. if (region->vmo().vnode()) {
  293. dbgprintf("NP(vnode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  294. page_in_from_vnode(*current->m_page_directory, *region, page_index_in_region);
  295. return PageFaultResponse::Continue;
  296. } else {
  297. kprintf("NP(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  298. }
  299. } else if (fault.is_protection_violation()) {
  300. if (region->cow_map.get(page_index_in_region)) {
  301. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  302. bool success = copy_on_write(*current, *region, page_index_in_region);
  303. ASSERT(success);
  304. return PageFaultResponse::Continue;
  305. }
  306. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  307. } else {
  308. ASSERT_NOT_REACHED();
  309. }
  310. return PageFaultResponse::ShouldCrash;
  311. }
  312. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
  313. {
  314. InterruptDisabler disabler;
  315. if (1 > m_free_physical_pages.size())
  316. return { };
  317. #ifdef MM_DEBUG
  318. dbgprintf("MM: allocate_physical_page vending P%x\n", m_free_physical_pages.last()->paddr().get());
  319. #endif
  320. return m_free_physical_pages.takeLast();
  321. }
  322. void MemoryManager::enter_kernel_paging_scope()
  323. {
  324. InterruptDisabler disabler;
  325. current->m_tss.cr3 = (dword)m_kernel_page_directory;
  326. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory):"memory");
  327. }
  328. void MemoryManager::enter_process_paging_scope(Process& process)
  329. {
  330. InterruptDisabler disabler;
  331. current->m_tss.cr3 = (dword)process.m_page_directory;
  332. asm volatile("movl %%eax, %%cr3"::"a"(process.m_page_directory):"memory");
  333. }
  334. void MemoryManager::flushEntireTLB()
  335. {
  336. asm volatile(
  337. "mov %cr3, %eax\n"
  338. "mov %eax, %cr3\n"
  339. );
  340. }
  341. void MemoryManager::flushTLB(LinearAddress laddr)
  342. {
  343. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  344. }
  345. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  346. {
  347. ASSERT_INTERRUPTS_DISABLED();
  348. auto page_laddr = LinearAddress(4 * MB);
  349. auto pte = ensurePTE(m_kernel_page_directory, page_laddr);
  350. pte.setPhysicalPageBase(physical_page.paddr().get());
  351. pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
  352. pte.setWritable(true);
  353. pte.setUserAllowed(false);
  354. flushTLB(page_laddr);
  355. #ifdef MM_DEBUG
  356. dbgprintf("MM: >> quickmap_page L%x => P%x\n", page_laddr, physical_page.paddr().get());
  357. #endif
  358. return page_laddr.asPtr();
  359. }
  360. void MemoryManager::unquickmap_page()
  361. {
  362. ASSERT_INTERRUPTS_DISABLED();
  363. auto page_laddr = LinearAddress(4 * MB);
  364. auto pte = ensurePTE(m_kernel_page_directory, page_laddr);
  365. #ifdef MM_DEBUG
  366. auto old_physical_address = pte.physicalPageBase();
  367. #endif
  368. pte.setPhysicalPageBase(0);
  369. pte.setPresent(false);
  370. pte.setWritable(false);
  371. pte.setUserAllowed(false);
  372. flushTLB(page_laddr);
  373. #ifdef MM_DEBUG
  374. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  375. #endif
  376. }
  377. void MemoryManager::remap_region_page(PageDirectory* page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
  378. {
  379. InterruptDisabler disabler;
  380. auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
  381. auto pte = ensurePTE(page_directory, page_laddr);
  382. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  383. ASSERT(physical_page);
  384. pte.setPhysicalPageBase(physical_page->paddr().get());
  385. pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
  386. if (region.cow_map.get(page_index_in_region))
  387. pte.setWritable(false);
  388. else
  389. pte.setWritable(region.is_writable);
  390. pte.setUserAllowed(user_allowed);
  391. if (page_directory->is_active())
  392. flushTLB(page_laddr);
  393. #ifdef MM_DEBUG
  394. dbgprintf("MM: >> remap_region_page (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  395. #endif
  396. }
  397. void MemoryManager::remap_region(Process& process, Region& region)
  398. {
  399. InterruptDisabler disabler;
  400. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  401. }
  402. void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  403. {
  404. InterruptDisabler disabler;
  405. auto& vmo = region.vmo();
  406. #ifdef MM_DEBUG
  407. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  408. #endif
  409. for (size_t i = region.first_page_index(); i <= region.last_page_index(); ++i) {
  410. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  411. auto pte = ensurePTE(page_directory, page_laddr);
  412. auto& physical_page = vmo.physical_pages()[i];
  413. if (physical_page) {
  414. pte.setPhysicalPageBase(physical_page->paddr().get());
  415. pte.setPresent(true); // FIXME: Maybe we should use the is_readable flag here?
  416. if (region.cow_map.get(i))
  417. pte.setWritable(false);
  418. else
  419. pte.setWritable(region.is_writable);
  420. } else {
  421. pte.setPhysicalPageBase(0);
  422. pte.setPresent(false);
  423. pte.setWritable(region.is_writable);
  424. }
  425. pte.setUserAllowed(user_allowed);
  426. if (page_directory->is_active())
  427. flushTLB(page_laddr);
  428. #ifdef MM_DEBUG
  429. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  430. #endif
  431. }
  432. }
  433. void MemoryManager::unmap_range(PageDirectory* page_directory, LinearAddress laddr, size_t size)
  434. {
  435. ASSERT((size % PAGE_SIZE) == 0);
  436. InterruptDisabler disabler;
  437. size_t numPages = size / PAGE_SIZE;
  438. for (size_t i = 0; i < numPages; ++i) {
  439. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  440. auto pte = ensurePTE(page_directory, page_laddr);
  441. pte.setPhysicalPageBase(0);
  442. pte.setPresent(false);
  443. pte.setWritable(false);
  444. pte.setUserAllowed(false);
  445. if (page_directory->is_active())
  446. flushTLB(page_laddr);
  447. #ifdef MM_DEBUG
  448. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  449. #endif
  450. }
  451. }
  452. LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
  453. {
  454. ASSERT((size % PAGE_SIZE) == 0);
  455. // FIXME: Recycle ranges!
  456. auto laddr = m_next_laddr;
  457. m_next_laddr.set(m_next_laddr.get() + size);
  458. return laddr;
  459. }
  460. byte* MemoryManager::create_kernel_alias_for_region(Region& region)
  461. {
  462. InterruptDisabler disabler;
  463. #ifdef MM_DEBUG
  464. dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
  465. #endif
  466. auto laddr = allocate_linear_address_range(region.size);
  467. map_region_at_address(m_kernel_page_directory, region, laddr, false);
  468. #ifdef MM_DEBUG
  469. dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
  470. #endif
  471. return laddr.asPtr();
  472. }
  473. void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
  474. {
  475. #ifdef MM_DEBUG
  476. dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
  477. #endif
  478. unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
  479. }
  480. bool MemoryManager::unmapRegion(Process& process, Region& region)
  481. {
  482. InterruptDisabler disabler;
  483. for (size_t i = 0; i < region.page_count(); ++i) {
  484. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  485. auto pte = ensurePTE(process.m_page_directory, laddr);
  486. pte.setPhysicalPageBase(0);
  487. pte.setPresent(false);
  488. pte.setWritable(false);
  489. pte.setUserAllowed(false);
  490. if (process.m_page_directory->is_active())
  491. flushTLB(laddr);
  492. #ifdef MM_DEBUG
  493. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  494. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  495. #endif
  496. }
  497. return true;
  498. }
  499. bool MemoryManager::mapRegion(Process& process, Region& region)
  500. {
  501. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  502. return true;
  503. }
  504. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  505. {
  506. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  507. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  508. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  509. if (!pde.isPresent())
  510. return false;
  511. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  512. if (!pte.isPresent())
  513. return false;
  514. if (!pte.isUserAllowed())
  515. return false;
  516. return true;
  517. }
  518. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  519. {
  520. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  521. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  522. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  523. if (!pde.isPresent())
  524. return false;
  525. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  526. if (!pte.isPresent())
  527. return false;
  528. if (!pte.isUserAllowed())
  529. return false;
  530. if (!pte.isWritable())
  531. return false;
  532. return true;
  533. }
  534. RetainPtr<Region> Region::clone()
  535. {
  536. InterruptDisabler disabler;
  537. if (is_readable && !is_writable) {
  538. // Create a new region backed by the same VMObject.
  539. return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
  540. }
  541. // Set up a COW region. The parent (this) region becomes COW as well!
  542. for (size_t i = 0; i < page_count(); ++i)
  543. cow_map.set(i, true);
  544. MM.remap_region(*current, *this);
  545. return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
  546. }
  547. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  548. : linearAddress(a)
  549. , size(s)
  550. , m_vmo(VMObject::create_anonymous(s))
  551. , name(move(n))
  552. , is_readable(r)
  553. , is_writable(w)
  554. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  555. {
  556. m_vmo->set_name(name);
  557. MM.register_region(*this);
  558. }
  559. Region::Region(LinearAddress a, size_t s, RetainPtr<VirtualFileSystem::Node>&& vnode, String&& n, bool r, bool w)
  560. : linearAddress(a)
  561. , size(s)
  562. , m_vmo(VMObject::create_file_backed(move(vnode), s))
  563. , name(move(n))
  564. , is_readable(r)
  565. , is_writable(w)
  566. , cow_map(Bitmap::create(m_vmo->page_count()))
  567. {
  568. MM.register_region(*this);
  569. }
  570. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  571. : linearAddress(a)
  572. , size(s)
  573. , m_offset_in_vmo(offset_in_vmo)
  574. , m_vmo(move(vmo))
  575. , name(move(n))
  576. , is_readable(r)
  577. , is_writable(w)
  578. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  579. {
  580. MM.register_region(*this);
  581. }
  582. Region::~Region()
  583. {
  584. MM.unregister_region(*this);
  585. }
  586. void PhysicalPage::return_to_freelist()
  587. {
  588. InterruptDisabler disabler;
  589. m_retain_count = 1;
  590. MM.m_free_physical_pages.append(adopt(*this));
  591. #ifdef MM_DEBUG
  592. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  593. #endif
  594. }
  595. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<VirtualFileSystem::Node>&& vnode, size_t size)
  596. {
  597. InterruptDisabler disabler;
  598. if (vnode->vmo())
  599. return static_cast<VMObject*>(vnode->vmo());
  600. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  601. auto vmo = adopt(*new VMObject(move(vnode), size));
  602. vmo->vnode()->set_vmo(vmo.ptr());
  603. return vmo;
  604. }
  605. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  606. {
  607. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  608. return adopt(*new VMObject(size));
  609. }
  610. RetainPtr<VMObject> VMObject::clone()
  611. {
  612. return adopt(*new VMObject(*this));
  613. }
  614. VMObject::VMObject(VMObject& other)
  615. : m_name(other.m_name)
  616. , m_anonymous(other.m_anonymous)
  617. , m_vnode_offset(other.m_vnode_offset)
  618. , m_size(other.m_size)
  619. , m_vnode(other.m_vnode)
  620. , m_physical_pages(other.m_physical_pages)
  621. {
  622. MM.register_vmo(*this);
  623. }
  624. VMObject::VMObject(size_t size)
  625. : m_anonymous(true)
  626. , m_size(size)
  627. {
  628. MM.register_vmo(*this);
  629. m_physical_pages.resize(page_count());
  630. }
  631. VMObject::VMObject(RetainPtr<VirtualFileSystem::Node>&& vnode, size_t size)
  632. : m_size(size)
  633. , m_vnode(move(vnode))
  634. {
  635. m_physical_pages.resize(page_count());
  636. MM.register_vmo(*this);
  637. }
  638. VMObject::~VMObject()
  639. {
  640. if (m_vnode) {
  641. ASSERT(m_vnode->vmo() == this);
  642. m_vnode->set_vmo(nullptr);
  643. }
  644. MM.unregister_vmo(*this);
  645. }
  646. int Region::commit(Process& process)
  647. {
  648. InterruptDisabler disabler;
  649. #ifdef MM_DEBUG
  650. dbgprintf("MM: commit %u pages in at L%x\n", vmo().page_count(), linearAddress.get());
  651. #endif
  652. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  653. if (!vmo().physical_pages()[i].is_null())
  654. continue;
  655. auto physical_page = MM.allocate_physical_page();
  656. if (!physical_page) {
  657. kprintf("MM: commit was unable to allocate a physical page\n");
  658. return -ENOMEM;
  659. }
  660. vmo().physical_pages()[i] = move(physical_page);
  661. MM.remap_region_page(process.m_page_directory, *this, i, true);
  662. }
  663. return 0;
  664. }
  665. void MemoryManager::register_vmo(VMObject& vmo)
  666. {
  667. InterruptDisabler disabler;
  668. m_vmos.set(&vmo);
  669. }
  670. void MemoryManager::unregister_vmo(VMObject& vmo)
  671. {
  672. InterruptDisabler disabler;
  673. m_vmos.remove(&vmo);
  674. }
  675. void MemoryManager::register_region(Region& region)
  676. {
  677. InterruptDisabler disabler;
  678. m_regions.set(&region);
  679. }
  680. void MemoryManager::unregister_region(Region& region)
  681. {
  682. InterruptDisabler disabler;
  683. m_regions.remove(&region);
  684. }
  685. inline bool PageDirectory::is_active() const
  686. {
  687. return &current->page_directory() == this;
  688. }