Region.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <Kernel/FileSystem/Inode.h>
  27. #include <Kernel/Process.h>
  28. #include <Kernel/Thread.h>
  29. #include <Kernel/VM/AnonymousVMObject.h>
  30. #include <Kernel/VM/MemoryManager.h>
  31. #include <Kernel/VM/PageDirectory.h>
  32. #include <Kernel/VM/Region.h>
  33. #include <Kernel/VM/SharedInodeVMObject.h>
  34. //#define MM_DEBUG
  35. //#define PAGE_FAULT_DEBUG
  36. namespace Kernel {
  37. Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, u8 access, bool cacheable)
  38. : m_range(range)
  39. , m_offset_in_vmobject(offset_in_vmobject)
  40. , m_vmobject(move(vmobject))
  41. , m_name(name)
  42. , m_access(access)
  43. , m_cacheable(cacheable)
  44. {
  45. MM.register_region(*this);
  46. }
  47. Region::~Region()
  48. {
  49. // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
  50. // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
  51. // find the address<->region mappings in an invalid state there.
  52. InterruptDisabler disabler;
  53. if (m_page_directory) {
  54. unmap(ShouldDeallocateVirtualMemoryRange::Yes);
  55. ASSERT(!m_page_directory);
  56. }
  57. MM.unregister_region(*this);
  58. }
  59. NonnullOwnPtr<Region> Region::clone()
  60. {
  61. ASSERT(Process::current);
  62. if (m_shared) {
  63. ASSERT(!m_stack);
  64. #ifdef MM_DEBUG
  65. dbg() << "Region::clone(): Sharing " << name() << " (" << vaddr() << ")";
  66. #endif
  67. if (vmobject().is_inode())
  68. ASSERT(vmobject().is_shared_inode());
  69. // Create a new region backed by the same VMObject.
  70. auto region = Region::create_user_accessible(m_range, m_vmobject, m_offset_in_vmobject, m_name, m_access);
  71. region->set_mmap(m_mmap);
  72. region->set_shared(m_shared);
  73. return region;
  74. }
  75. if (vmobject().is_inode())
  76. ASSERT(vmobject().is_private_inode());
  77. #ifdef MM_DEBUG
  78. dbg() << "Region::clone(): CoWing " << name() << " (" << vaddr() << ")";
  79. #endif
  80. // Set up a COW region. The parent (this) region becomes COW as well!
  81. ensure_cow_map().fill(true);
  82. remap();
  83. auto clone_region = Region::create_user_accessible(m_range, m_vmobject->clone(), m_offset_in_vmobject, m_name, m_access);
  84. clone_region->ensure_cow_map();
  85. if (m_stack) {
  86. ASSERT(is_readable());
  87. ASSERT(is_writable());
  88. ASSERT(vmobject().is_anonymous());
  89. clone_region->set_stack(true);
  90. }
  91. clone_region->set_mmap(m_mmap);
  92. return clone_region;
  93. }
  94. bool Region::commit()
  95. {
  96. InterruptDisabler disabler;
  97. #ifdef MM_DEBUG
  98. dbg() << "MM: Commit " << page_count() << " pages in Region " << this << " (VMO=" << &vmobject() << ") at " << vaddr();
  99. #endif
  100. for (size_t i = 0; i < page_count(); ++i) {
  101. if (!commit(i))
  102. return false;
  103. }
  104. return true;
  105. }
  106. bool Region::commit(size_t page_index)
  107. {
  108. ASSERT(vmobject().is_anonymous() || vmobject().is_purgeable());
  109. InterruptDisabler disabler;
  110. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index];
  111. if (!vmobject_physical_page_entry.is_null() && !vmobject_physical_page_entry->is_shared_zero_page())
  112. return true;
  113. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  114. if (!physical_page) {
  115. klog() << "MM: commit was unable to allocate a physical page";
  116. return false;
  117. }
  118. vmobject_physical_page_entry = move(physical_page);
  119. remap_page(page_index);
  120. return true;
  121. }
  122. u32 Region::cow_pages() const
  123. {
  124. if (!m_cow_map)
  125. return 0;
  126. u32 count = 0;
  127. for (size_t i = 0; i < m_cow_map->size(); ++i)
  128. count += m_cow_map->get(i);
  129. return count;
  130. }
  131. size_t Region::amount_dirty() const
  132. {
  133. if (!vmobject().is_inode())
  134. return amount_resident();
  135. return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
  136. }
  137. size_t Region::amount_resident() const
  138. {
  139. size_t bytes = 0;
  140. for (size_t i = 0; i < page_count(); ++i) {
  141. auto& physical_page = m_vmobject->physical_pages()[first_page_index() + i];
  142. if (physical_page && !physical_page->is_shared_zero_page())
  143. bytes += PAGE_SIZE;
  144. }
  145. return bytes;
  146. }
  147. size_t Region::amount_shared() const
  148. {
  149. size_t bytes = 0;
  150. for (size_t i = 0; i < page_count(); ++i) {
  151. auto& physical_page = m_vmobject->physical_pages()[first_page_index() + i];
  152. if (physical_page && physical_page->ref_count() > 1 && !physical_page->is_shared_zero_page())
  153. bytes += PAGE_SIZE;
  154. }
  155. return bytes;
  156. }
  157. NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access, bool cacheable)
  158. {
  159. auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access, cacheable);
  160. region->m_user_accessible = true;
  161. return region;
  162. }
  163. NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access, bool cacheable)
  164. {
  165. auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access, cacheable);
  166. region->m_user_accessible = false;
  167. return region;
  168. }
  169. bool Region::should_cow(size_t page_index) const
  170. {
  171. auto& slot = vmobject().physical_pages()[page_index];
  172. if (slot && slot->is_shared_zero_page())
  173. return true;
  174. if (m_shared)
  175. return false;
  176. return m_cow_map && m_cow_map->get(page_index);
  177. }
  178. void Region::set_should_cow(size_t page_index, bool cow)
  179. {
  180. ASSERT(!m_shared);
  181. ensure_cow_map().set(page_index, cow);
  182. }
  183. Bitmap& Region::ensure_cow_map() const
  184. {
  185. if (!m_cow_map)
  186. m_cow_map = make<Bitmap>(page_count(), true);
  187. return *m_cow_map;
  188. }
  189. void Region::map_individual_page_impl(size_t page_index)
  190. {
  191. auto page_vaddr = vaddr().offset(page_index * PAGE_SIZE);
  192. auto& pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  193. auto& physical_page = vmobject().physical_pages()[first_page_index() + page_index];
  194. if (!physical_page) {
  195. pte.clear();
  196. } else {
  197. pte.set_cache_disabled(!m_cacheable);
  198. pte.set_physical_page_base(physical_page->paddr().get());
  199. pte.set_present(true);
  200. if (should_cow(page_index))
  201. pte.set_writable(false);
  202. else
  203. pte.set_writable(is_writable());
  204. if (g_cpu_supports_nx)
  205. pte.set_execute_disabled(!is_executable());
  206. pte.set_user_allowed(is_user_accessible());
  207. #ifdef MM_DEBUG
  208. dbg() << "MM: >> region map (PD=" << m_page_directory->cr3() << ", PTE=" << (void*)pte.raw() << "{" << &pte << "}) " << name() << " " << page_vaddr << " => " << physical_page->paddr() << " (@" << physical_page.ptr() << ")";
  209. #endif
  210. }
  211. MM.flush_tlb(page_vaddr);
  212. }
  213. void Region::remap_page(size_t page_index)
  214. {
  215. ASSERT(m_page_directory);
  216. InterruptDisabler disabler;
  217. ASSERT(vmobject().physical_pages()[first_page_index() + page_index]);
  218. map_individual_page_impl(page_index);
  219. }
  220. void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
  221. {
  222. InterruptDisabler disabler;
  223. ASSERT(m_page_directory);
  224. for (size_t i = 0; i < page_count(); ++i) {
  225. auto vaddr = this->vaddr().offset(i * PAGE_SIZE);
  226. auto& pte = MM.ensure_pte(*m_page_directory, vaddr);
  227. pte.clear();
  228. MM.flush_tlb(vaddr);
  229. #ifdef MM_DEBUG
  230. auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
  231. dbg() << "MM: >> Unmapped V" << String::format("%p", vaddr.get()) << " => P" << String::format("%p", physical_page ? physical_page->paddr().get() : 0) << " <<";
  232. #endif
  233. }
  234. if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes)
  235. m_page_directory->range_allocator().deallocate(range());
  236. m_page_directory = nullptr;
  237. }
  238. void Region::set_page_directory(PageDirectory& page_directory)
  239. {
  240. ASSERT(!m_page_directory || m_page_directory == &page_directory);
  241. InterruptDisabler disabler;
  242. m_page_directory = page_directory;
  243. }
  244. void Region::map(PageDirectory& page_directory)
  245. {
  246. set_page_directory(page_directory);
  247. InterruptDisabler disabler;
  248. #ifdef MM_DEBUG
  249. dbg() << "MM: Region::map() will map VMO pages " << first_page_index() << " - " << last_page_index() << " (VMO page count: " << vmobject().page_count() << ")";
  250. #endif
  251. for (size_t page_index = 0; page_index < page_count(); ++page_index)
  252. map_individual_page_impl(page_index);
  253. }
  254. void Region::remap()
  255. {
  256. ASSERT(m_page_directory);
  257. map(*m_page_directory);
  258. }
  259. PageFaultResponse Region::handle_fault(const PageFault& fault)
  260. {
  261. auto page_index_in_region = page_index_from_address(fault.vaddr());
  262. if (fault.type() == PageFault::Type::PageNotPresent) {
  263. if (fault.is_read() && !is_readable()) {
  264. dbg() << "NP(non-readable) fault in Region{" << this << "}[" << page_index_in_region << "]";
  265. return PageFaultResponse::ShouldCrash;
  266. }
  267. if (vmobject().is_inode()) {
  268. #ifdef PAGE_FAULT_DEBUG
  269. dbg() << "NP(inode) fault in Region{" << this << "}[" << page_index_in_region << "]";
  270. #endif
  271. return handle_inode_fault(page_index_in_region);
  272. }
  273. #ifdef MAP_SHARED_ZERO_PAGE_LAZILY
  274. if (fault.is_read()) {
  275. vmobject().physical_pages()[first_page_index() + page_index_in_region] = MM.shared_zero_page();
  276. remap_page(page_index_in_region);
  277. return PageFaultResponse::Continue;
  278. }
  279. return handle_zero_fault(page_index_in_region);
  280. #else
  281. ASSERT_NOT_REACHED();
  282. #endif
  283. }
  284. ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
  285. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  286. #ifdef PAGE_FAULT_DEBUG
  287. dbg() << "PV(cow) fault in Region{" << this << "}[" << page_index_in_region << "]";
  288. #endif
  289. if (vmobject().physical_pages()[first_page_index() + page_index_in_region]->is_shared_zero_page()) {
  290. #ifdef PAGE_FAULT_DEBUG
  291. dbg() << "NP(zero) fault in Region{" << this << "}[" << page_index_in_region << "]";
  292. #endif
  293. return handle_zero_fault(page_index_in_region);
  294. }
  295. return handle_cow_fault(page_index_in_region);
  296. }
  297. dbg() << "PV(error) fault in Region{" << this << "}[" << page_index_in_region << "] at " << fault.vaddr();
  298. return PageFaultResponse::ShouldCrash;
  299. }
  300. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  301. {
  302. ASSERT_INTERRUPTS_DISABLED();
  303. ASSERT(vmobject().is_anonymous());
  304. sti();
  305. LOCKER(vmobject().m_paging_lock);
  306. cli();
  307. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
  308. if (!vmobject_physical_page_entry.is_null() && !vmobject_physical_page_entry->is_shared_zero_page()) {
  309. #ifdef PAGE_FAULT_DEBUG
  310. dbg() << "MM: zero_page() but page already present. Fine with me!";
  311. #endif
  312. remap_page(page_index_in_region);
  313. return PageFaultResponse::Continue;
  314. }
  315. if (Thread::current)
  316. Thread::current->did_zero_fault();
  317. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  318. if (physical_page.is_null()) {
  319. klog() << "MM: handle_zero_fault was unable to allocate a physical page";
  320. return PageFaultResponse::ShouldCrash;
  321. }
  322. #ifdef PAGE_FAULT_DEBUG
  323. dbg() << " >> ZERO P\n"
  324. << String::format("%p", physical_page->paddr().get());
  325. #endif
  326. vmobject_physical_page_entry = move(physical_page);
  327. remap_page(page_index_in_region);
  328. return PageFaultResponse::Continue;
  329. }
  330. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  331. {
  332. ASSERT_INTERRUPTS_DISABLED();
  333. auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
  334. if (vmobject_physical_page_entry->ref_count() == 1) {
  335. #ifdef PAGE_FAULT_DEBUG
  336. dbg() << " >> It's a COW page but nobody is sharing it anymore. Remap r/w";
  337. #endif
  338. set_should_cow(page_index_in_region, false);
  339. remap_page(page_index_in_region);
  340. return PageFaultResponse::Continue;
  341. }
  342. if (Thread::current)
  343. Thread::current->did_cow_fault();
  344. #ifdef PAGE_FAULT_DEBUG
  345. dbg() << " >> It's a COW page and it's time to COW!";
  346. #endif
  347. auto physical_page_to_copy = move(vmobject_physical_page_entry);
  348. auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  349. if (physical_page.is_null()) {
  350. klog() << "MM: handle_cow_fault was unable to allocate a physical page";
  351. return PageFaultResponse::ShouldCrash;
  352. }
  353. u8* dest_ptr = MM.quickmap_page(*physical_page);
  354. const u8* src_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  355. #ifdef PAGE_FAULT_DEBUG
  356. dbg() << " >> COW P" << String::format("%p", physical_page->paddr().get()) << " <- P" << String::format("%p", physical_page_to_copy->paddr().get());
  357. #endif
  358. copy_from_user(dest_ptr, src_ptr, PAGE_SIZE);
  359. vmobject_physical_page_entry = move(physical_page);
  360. MM.unquickmap_page();
  361. set_should_cow(page_index_in_region, false);
  362. remap_page(page_index_in_region);
  363. return PageFaultResponse::Continue;
  364. }
  365. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  366. {
  367. ASSERT_INTERRUPTS_DISABLED();
  368. ASSERT(vmobject().is_inode());
  369. sti();
  370. LOCKER(vmobject().m_paging_lock);
  371. cli();
  372. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  373. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[first_page_index() + page_index_in_region];
  374. #ifdef PAGE_FAULT_DEBUG
  375. dbg() << "Inode fault in " << name() << " page index: " << page_index_in_region;
  376. #endif
  377. if (!vmobject_physical_page_entry.is_null()) {
  378. #ifdef PAGE_FAULT_DEBUG
  379. dbg() << ("MM: page_in_from_inode() but page already present. Fine with me!");
  380. #endif
  381. remap_page(page_index_in_region);
  382. return PageFaultResponse::Continue;
  383. }
  384. if (Thread::current)
  385. Thread::current->did_inode_fault();
  386. #ifdef MM_DEBUG
  387. dbg() << "MM: page_in_from_inode ready to read from inode";
  388. #endif
  389. sti();
  390. u8 page_buffer[PAGE_SIZE];
  391. auto& inode = inode_vmobject.inode();
  392. auto nread = inode.read_bytes((first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
  393. if (nread < 0) {
  394. klog() << "MM: handle_inode_fault had error (" << nread << ") while reading!";
  395. return PageFaultResponse::ShouldCrash;
  396. }
  397. if (nread < PAGE_SIZE) {
  398. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  399. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  400. }
  401. cli();
  402. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  403. if (vmobject_physical_page_entry.is_null()) {
  404. klog() << "MM: handle_inode_fault was unable to allocate a physical page";
  405. return PageFaultResponse::ShouldCrash;
  406. }
  407. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  408. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  409. MM.unquickmap_page();
  410. remap_page(page_index_in_region);
  411. return PageFaultResponse::Continue;
  412. }
  413. }