MemoryManager.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. #include <Kernel/VM/PurgeableVMObject.h>
  13. //#define MM_DEBUG
  14. //#define PAGE_FAULT_DEBUG
  15. static MemoryManager* s_the;
  16. MemoryManager& MM
  17. {
  18. return *s_the;
  19. }
  20. MemoryManager::MemoryManager(u32 physical_address_for_kernel_page_tables)
  21. {
  22. CPUID id(0x80000001);
  23. m_has_nx_support = (id.edx() & (1 << 20)) != 0;
  24. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(physical_address_for_kernel_page_tables));
  25. for (size_t i = 0; i < 4; ++i) {
  26. m_low_page_tables[i] = (PageTableEntry*)(physical_address_for_kernel_page_tables + PAGE_SIZE * (5 + i));
  27. memset(m_low_page_tables[i], 0, PAGE_SIZE);
  28. }
  29. initialize_paging();
  30. kprintf("MM initialized.\n");
  31. }
  32. MemoryManager::~MemoryManager()
  33. {
  34. }
  35. void MemoryManager::initialize_paging()
  36. {
  37. #ifdef MM_DEBUG
  38. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  39. #endif
  40. #ifdef MM_DEBUG
  41. dbgprintf("MM: Protect against null dereferences\n");
  42. #endif
  43. // Make null dereferences crash.
  44. map_protected(VirtualAddress(0), PAGE_SIZE);
  45. #ifdef MM_DEBUG
  46. dbgprintf("MM: Identity map bottom 8MB\n");
  47. #endif
  48. // The bottom 8 MB (except for the null page) are identity mapped & supervisor only.
  49. // Every process shares these mappings.
  50. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (8 * MB) - PAGE_SIZE);
  51. // Disable execution from 0MB through 1MB (BIOS data, legacy things, ...)
  52. for (size_t i = 0; i < (1 * MB); ++i) {
  53. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  54. if (m_has_nx_support)
  55. pte.set_execute_disabled(true);
  56. }
  57. // Disable execution from 2MB through 8MB (kmalloc, kmalloc_eternal, slabs, page tables, ...)
  58. for (size_t i = 1; i < 4; ++i) {
  59. auto& pte = kernel_page_directory().table().directory(0)[i];
  60. if (m_has_nx_support)
  61. pte.set_execute_disabled(true);
  62. }
  63. // FIXME: We should move everything kernel-related above the 0xc0000000 virtual mark.
  64. // Basic physical memory map:
  65. // 0 -> 1 MB We're just leaving this alone for now.
  66. // 1 -> 3 MB Kernel image.
  67. // (last page before 2MB) Used by quickmap_page().
  68. // 2 MB -> 4 MB kmalloc_eternal() space.
  69. // 4 MB -> 7 MB kmalloc() space.
  70. // 7 MB -> 8 MB Supervisor physical pages (available for allocation!)
  71. // 8 MB -> MAX Userspace physical pages (available for allocation!)
  72. // Basic virtual memory map:
  73. // 0 -> 4 KB Null page (so nullptr dereferences crash!)
  74. // 4 KB -> 8 MB Identity mapped.
  75. // 8 MB -> 3 GB Available to userspace.
  76. // 3GB -> 4 GB Kernel-only virtual address space (>0xc0000000)
  77. #ifdef MM_DEBUG
  78. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  79. #endif
  80. m_quickmap_addr = VirtualAddress((2 * MB) - PAGE_SIZE);
  81. RefPtr<PhysicalRegion> region;
  82. bool region_is_super = false;
  83. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  84. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  85. (u32)(mmap->addr >> 32),
  86. (u32)(mmap->addr & 0xffffffff),
  87. (u32)(mmap->len >> 32),
  88. (u32)(mmap->len & 0xffffffff),
  89. (u32)mmap->type);
  90. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  91. continue;
  92. // FIXME: Maybe make use of stuff below the 1MB mark?
  93. if (mmap->addr < (1 * MB))
  94. continue;
  95. if ((mmap->addr + mmap->len) > 0xffffffff)
  96. continue;
  97. auto diff = (u32)mmap->addr % PAGE_SIZE;
  98. if (diff != 0) {
  99. kprintf("MM: got an unaligned region base from the bootloader; correcting %p by %d bytes\n", mmap->addr, diff);
  100. diff = PAGE_SIZE - diff;
  101. mmap->addr += diff;
  102. mmap->len -= diff;
  103. }
  104. if ((mmap->len % PAGE_SIZE) != 0) {
  105. kprintf("MM: got an unaligned region length from the bootloader; correcting %d by %d bytes\n", mmap->len, mmap->len % PAGE_SIZE);
  106. mmap->len -= mmap->len % PAGE_SIZE;
  107. }
  108. if (mmap->len < PAGE_SIZE) {
  109. kprintf("MM: memory region from bootloader is too small; we want >= %d bytes, but got %d bytes\n", PAGE_SIZE, mmap->len);
  110. continue;
  111. }
  112. #ifdef MM_DEBUG
  113. kprintf("MM: considering memory at %p - %p\n",
  114. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  115. #endif
  116. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  117. auto addr = PhysicalAddress(page_base);
  118. if (page_base < 7 * MB) {
  119. // nothing
  120. } else if (page_base >= 7 * MB && page_base < 8 * MB) {
  121. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  122. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  123. region = m_super_physical_regions.last();
  124. region_is_super = true;
  125. } else {
  126. region->expand(region->lower(), addr);
  127. }
  128. } else {
  129. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  130. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  131. region = m_user_physical_regions.last();
  132. region_is_super = false;
  133. } else {
  134. region->expand(region->lower(), addr);
  135. }
  136. }
  137. }
  138. }
  139. for (auto& region : m_super_physical_regions)
  140. m_super_physical_pages += region.finalize_capacity();
  141. for (auto& region : m_user_physical_regions)
  142. m_user_physical_pages += region.finalize_capacity();
  143. #ifdef MM_DEBUG
  144. dbgprintf("MM: Installing page directory\n");
  145. #endif
  146. // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
  147. asm volatile(
  148. "mov %cr4, %eax\n"
  149. "orl $0x80, %eax\n"
  150. "mov %eax, %cr4\n");
  151. // Turn on CR4.PAE
  152. asm volatile(
  153. "mov %cr4, %eax\n"
  154. "orl $0x20, %eax\n"
  155. "mov %eax, %cr4\n");
  156. if (m_has_nx_support) {
  157. kprintf("MM: NX support detected; enabling NXE flag\n");
  158. // Turn on IA32_EFER.NXE
  159. asm volatile(
  160. "movl $0xc0000080, %ecx\n"
  161. "rdmsr\n"
  162. "orl $0x800, %eax\n"
  163. "wrmsr\n");
  164. } else {
  165. kprintf("MM: NX support not detected\n");
  166. }
  167. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  168. asm volatile(
  169. "movl %%cr0, %%eax\n"
  170. "orl $0x80010001, %%eax\n"
  171. "movl %%eax, %%cr0\n" ::
  172. : "%eax", "memory");
  173. #ifdef MM_DEBUG
  174. dbgprintf("MM: Paging initialized.\n");
  175. #endif
  176. }
  177. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  178. {
  179. ASSERT_INTERRUPTS_DISABLED();
  180. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  181. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  182. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  183. PageDirectoryEntry& pde = page_directory.table().directory(page_directory_table_index)[page_directory_index];
  184. if (!pde.is_present()) {
  185. #ifdef MM_DEBUG
  186. dbgprintf("MM: PDE %u not present (requested for V%p), allocating\n", page_directory_index, vaddr.get());
  187. #endif
  188. if (page_directory_table_index == 0 && page_directory_index < 4) {
  189. ASSERT(&page_directory == m_kernel_page_directory);
  190. pde.set_page_table_base((u32)m_low_page_tables[page_directory_index]);
  191. pde.set_user_allowed(false);
  192. pde.set_present(true);
  193. pde.set_writable(true);
  194. pde.set_global(true);
  195. } else {
  196. auto page_table = allocate_supervisor_physical_page();
  197. #ifdef MM_DEBUG
  198. dbgprintf("MM: PD K%p (%s) at P%p allocated page table #%u (for V%p) at P%p\n",
  199. &page_directory,
  200. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  201. page_directory.cr3(),
  202. page_directory_index,
  203. vaddr.get(),
  204. page_table->paddr().get());
  205. #endif
  206. pde.set_page_table_base(page_table->paddr().get());
  207. pde.set_user_allowed(true);
  208. pde.set_present(true);
  209. pde.set_writable(true);
  210. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  211. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  212. }
  213. }
  214. return pde.page_table_base()[page_table_index];
  215. }
  216. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  217. {
  218. InterruptDisabler disabler;
  219. ASSERT(vaddr.is_page_aligned());
  220. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  221. auto pte_address = vaddr.offset(offset);
  222. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  223. pte.set_physical_page_base(pte_address.get());
  224. pte.set_user_allowed(false);
  225. pte.set_present(false);
  226. pte.set_writable(false);
  227. flush_tlb(pte_address);
  228. }
  229. }
  230. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  231. {
  232. InterruptDisabler disabler;
  233. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  234. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  235. auto pte_address = vaddr.offset(offset);
  236. auto& pte = ensure_pte(page_directory, pte_address);
  237. pte.set_physical_page_base(pte_address.get());
  238. pte.set_user_allowed(false);
  239. pte.set_present(true);
  240. pte.set_writable(true);
  241. page_directory.flush(pte_address);
  242. }
  243. }
  244. void MemoryManager::initialize(u32 physical_address_for_kernel_page_tables)
  245. {
  246. s_the = new MemoryManager(physical_address_for_kernel_page_tables);
  247. }
  248. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  249. {
  250. if (vaddr.get() < 0xc0000000)
  251. return nullptr;
  252. for (auto& region : MM.m_kernel_regions) {
  253. if (region.contains(vaddr))
  254. return &region;
  255. }
  256. return nullptr;
  257. }
  258. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  259. {
  260. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  261. for (auto& region : process.m_regions) {
  262. if (region.contains(vaddr))
  263. return &region;
  264. }
  265. dbg() << process << " Couldn't find user region for " << vaddr;
  266. return nullptr;
  267. }
  268. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  269. {
  270. if (auto* region = kernel_region_from_vaddr(vaddr))
  271. return region;
  272. return user_region_from_vaddr(process, vaddr);
  273. }
  274. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  275. {
  276. if (auto* region = kernel_region_from_vaddr(vaddr))
  277. return region;
  278. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  279. }
  280. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  281. {
  282. if (auto* region = kernel_region_from_vaddr(vaddr))
  283. return region;
  284. auto page_directory = PageDirectory::find_by_cr3(cpu_cr3());
  285. if (!page_directory)
  286. return nullptr;
  287. ASSERT(page_directory->process());
  288. return user_region_from_vaddr(*page_directory->process(), vaddr);
  289. }
  290. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  291. {
  292. ASSERT_INTERRUPTS_DISABLED();
  293. ASSERT(current);
  294. #ifdef PAGE_FAULT_DEBUG
  295. dbgprintf("MM: handle_page_fault(%w) at V%p\n", fault.code(), fault.vaddr().get());
  296. #endif
  297. ASSERT(fault.vaddr() != m_quickmap_addr);
  298. auto* region = region_from_vaddr(fault.vaddr());
  299. if (!region) {
  300. kprintf("NP(error) fault at invalid address V%p\n", fault.vaddr().get());
  301. return PageFaultResponse::ShouldCrash;
  302. }
  303. return region->handle_fault(fault);
  304. }
  305. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit)
  306. {
  307. InterruptDisabler disabler;
  308. ASSERT(!(size % PAGE_SIZE));
  309. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  310. ASSERT(range.is_valid());
  311. OwnPtr<Region> region;
  312. if (user_accessible)
  313. region = Region::create_user_accessible(range, name, access);
  314. else
  315. region = Region::create_kernel_only(range, name, access);
  316. region->map(kernel_page_directory());
  317. // FIXME: It would be cool if these could zero-fill on demand instead.
  318. if (should_commit)
  319. region->commit();
  320. return region;
  321. }
  322. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access)
  323. {
  324. return allocate_kernel_region(size, name, access, true);
  325. }
  326. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access)
  327. {
  328. InterruptDisabler disabler;
  329. ASSERT(!(size % PAGE_SIZE));
  330. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  331. ASSERT(range.is_valid());
  332. auto region = make<Region>(range, vmobject, 0, name, access);
  333. region->map(kernel_page_directory());
  334. return region;
  335. }
  336. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  337. {
  338. for (auto& region : m_user_physical_regions) {
  339. if (!region.contains(page)) {
  340. kprintf(
  341. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  342. page.paddr().get(), region.lower().get(), region.upper().get());
  343. continue;
  344. }
  345. region.return_page(move(page));
  346. --m_user_physical_pages_used;
  347. return;
  348. }
  349. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr().get());
  350. ASSERT_NOT_REACHED();
  351. }
  352. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  353. {
  354. RefPtr<PhysicalPage> page;
  355. for (auto& region : m_user_physical_regions) {
  356. page = region.take_free_page(false);
  357. if (!page.is_null())
  358. break;
  359. }
  360. return page;
  361. }
  362. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  363. {
  364. InterruptDisabler disabler;
  365. RefPtr<PhysicalPage> page = find_free_user_physical_page();
  366. if (!page) {
  367. if (m_user_physical_regions.is_empty()) {
  368. kprintf("MM: no user physical regions available (?)\n");
  369. }
  370. for_each_vmobject([&](auto& vmobject) {
  371. if (vmobject.is_purgeable()) {
  372. auto& purgeable_vmobject = static_cast<PurgeableVMObject&>(vmobject);
  373. int purged_page_count = purgeable_vmobject.purge_with_interrupts_disabled({});
  374. if (purged_page_count) {
  375. kprintf("MM: Purge saved the day! Purged %d pages from PurgeableVMObject{%p}\n", purged_page_count, &purgeable_vmobject);
  376. page = find_free_user_physical_page();
  377. ASSERT(page);
  378. return IterationDecision::Break;
  379. }
  380. }
  381. return IterationDecision::Continue;
  382. });
  383. if (!page) {
  384. kprintf("MM: no user physical pages available\n");
  385. ASSERT_NOT_REACHED();
  386. return {};
  387. }
  388. }
  389. #ifdef MM_DEBUG
  390. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  391. #endif
  392. if (should_zero_fill == ShouldZeroFill::Yes) {
  393. auto* ptr = (u32*)quickmap_page(*page);
  394. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  395. unquickmap_page();
  396. }
  397. ++m_user_physical_pages_used;
  398. return page;
  399. }
  400. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  401. {
  402. for (auto& region : m_super_physical_regions) {
  403. if (!region.contains(page)) {
  404. kprintf(
  405. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  406. page.paddr().get(), region.lower().get(), region.upper().get());
  407. continue;
  408. }
  409. region.return_page(move(page));
  410. --m_super_physical_pages_used;
  411. return;
  412. }
  413. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr().get());
  414. ASSERT_NOT_REACHED();
  415. }
  416. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  417. {
  418. InterruptDisabler disabler;
  419. RefPtr<PhysicalPage> page;
  420. for (auto& region : m_super_physical_regions) {
  421. page = region.take_free_page(true);
  422. if (page.is_null())
  423. continue;
  424. }
  425. if (!page) {
  426. if (m_super_physical_regions.is_empty()) {
  427. kprintf("MM: no super physical regions available (?)\n");
  428. }
  429. kprintf("MM: no super physical pages available\n");
  430. ASSERT_NOT_REACHED();
  431. return {};
  432. }
  433. #ifdef MM_DEBUG
  434. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  435. #endif
  436. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  437. ++m_super_physical_pages_used;
  438. return page;
  439. }
  440. void MemoryManager::enter_process_paging_scope(Process& process)
  441. {
  442. ASSERT(current);
  443. InterruptDisabler disabler;
  444. current->tss().cr3 = process.page_directory().cr3();
  445. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  446. : "memory");
  447. }
  448. void MemoryManager::flush_entire_tlb()
  449. {
  450. asm volatile(
  451. "mov %%cr3, %%eax\n"
  452. "mov %%eax, %%cr3\n" ::
  453. : "%eax", "memory");
  454. }
  455. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  456. {
  457. asm volatile("invlpg %0"
  458. :
  459. : "m"(*(char*)vaddr.get())
  460. : "memory");
  461. }
  462. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr, bool cache_disabled)
  463. {
  464. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  465. pte.set_physical_page_base(paddr.get());
  466. pte.set_present(true);
  467. pte.set_writable(true);
  468. pte.set_user_allowed(false);
  469. pte.set_cache_disabled(cache_disabled);
  470. flush_tlb(vaddr);
  471. }
  472. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  473. {
  474. ASSERT_INTERRUPTS_DISABLED();
  475. ASSERT(!m_quickmap_in_use);
  476. m_quickmap_in_use = true;
  477. auto page_vaddr = m_quickmap_addr;
  478. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  479. pte.set_physical_page_base(physical_page.paddr().get());
  480. pte.set_present(true);
  481. pte.set_writable(true);
  482. pte.set_user_allowed(false);
  483. flush_tlb(page_vaddr);
  484. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  485. #ifdef MM_DEBUG
  486. dbg() << "MM: >> quickmap_page " << page_vaddr << " => " << physical_page.paddr() << " @ PTE=" << (void*)pte.raw() << " {" << &pte << "}";
  487. #endif
  488. return page_vaddr.as_ptr();
  489. }
  490. void MemoryManager::unquickmap_page()
  491. {
  492. ASSERT_INTERRUPTS_DISABLED();
  493. ASSERT(m_quickmap_in_use);
  494. auto page_vaddr = m_quickmap_addr;
  495. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  496. #ifdef MM_DEBUG
  497. auto old_physical_address = pte.physical_page_base();
  498. #endif
  499. pte.set_physical_page_base(0);
  500. pte.set_present(false);
  501. pte.set_writable(false);
  502. flush_tlb(page_vaddr);
  503. #ifdef MM_DEBUG
  504. dbg() << "MM: >> unquickmap_page " << page_vaddr << " =/> " << old_physical_address;
  505. #endif
  506. m_quickmap_in_use = false;
  507. }
  508. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  509. {
  510. auto* region = region_from_vaddr(process, vaddr);
  511. return region && region->is_stack();
  512. }
  513. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  514. {
  515. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  516. return region && region->is_user_accessible() && region->is_readable();
  517. }
  518. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  519. {
  520. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  521. return region && region->is_user_accessible() && region->is_writable();
  522. }
  523. void MemoryManager::register_vmobject(VMObject& vmobject)
  524. {
  525. InterruptDisabler disabler;
  526. m_vmobjects.append(&vmobject);
  527. }
  528. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  529. {
  530. InterruptDisabler disabler;
  531. m_vmobjects.remove(&vmobject);
  532. }
  533. void MemoryManager::register_region(Region& region)
  534. {
  535. InterruptDisabler disabler;
  536. if (region.vaddr().get() >= 0xc0000000)
  537. m_kernel_regions.append(&region);
  538. else
  539. m_user_regions.append(&region);
  540. }
  541. void MemoryManager::unregister_region(Region& region)
  542. {
  543. InterruptDisabler disabler;
  544. if (region.vaddr().get() >= 0xc0000000)
  545. m_kernel_regions.remove(&region);
  546. else
  547. m_user_regions.remove(&region);
  548. }
  549. ProcessPagingScope::ProcessPagingScope(Process& process)
  550. {
  551. ASSERT(current);
  552. MM.enter_process_paging_scope(process);
  553. }
  554. ProcessPagingScope::~ProcessPagingScope()
  555. {
  556. MM.enter_process_paging_scope(current->process());
  557. }