Task.cpp 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. #include "types.h"
  2. #include "Task.h"
  3. #include "kmalloc.h"
  4. #include "VGA.h"
  5. #include "StdLib.h"
  6. #include "i386.h"
  7. #include "system.h"
  8. #include <VirtualFileSystem/FileHandle.h>
  9. #include <VirtualFileSystem/VirtualFileSystem.h>
  10. #include <ELFLoader/ExecSpace.h>
  11. #include "MemoryManager.h"
  12. #include "errno.h"
  13. #include "i8253.h"
  14. #include "RTC.h"
  15. #include "ProcFileSystem.h"
  16. #include <AK/StdLib.h>
  17. //#define DEBUG_IO
  18. //#define TASK_DEBUG
  19. //#define SCHEDULER_DEBUG
  20. // FIXME: Only do a single validation for accesses that don't span multiple pages.
  21. // FIXME: Some places pass strlen(arg1) as arg2. This doesn't seem entirely perfect..
  22. #define VALIDATE_USER_READ(b, s) \
  23. do { \
  24. LinearAddress laddr((dword)(b)); \
  25. if (!validate_user_read(laddr) || !validate_user_read(laddr.offset((s) - 1))) \
  26. return -EFAULT; \
  27. } while(0)
  28. #define VALIDATE_USER_WRITE(b, s) \
  29. do { \
  30. LinearAddress laddr((dword)(b)); \
  31. if (!validate_user_write(laddr) || !validate_user_write(laddr.offset((s) - 1))) \
  32. return -EFAULT; \
  33. } while(0)
  34. static const DWORD defaultStackSize = 16384;
  35. Task* current;
  36. Task* s_kernelTask;
  37. static pid_t next_pid;
  38. static InlineLinkedList<Task>* s_tasks;
  39. static InlineLinkedList<Task>* s_deadTasks;
  40. static String* s_hostname;
  41. static String& hostnameStorage(InterruptDisabler&)
  42. {
  43. ASSERT(s_hostname);
  44. return *s_hostname;
  45. }
  46. static String getHostname()
  47. {
  48. InterruptDisabler disabler;
  49. return hostnameStorage(disabler).isolatedCopy();
  50. }
  51. static bool contextSwitch(Task*);
  52. static void redoKernelTaskTSS()
  53. {
  54. if (!s_kernelTask->selector())
  55. s_kernelTask->setSelector(allocateGDTEntry());
  56. auto& tssDescriptor = getGDTEntry(s_kernelTask->selector());
  57. tssDescriptor.setBase(&s_kernelTask->tss());
  58. tssDescriptor.setLimit(0xffff);
  59. tssDescriptor.dpl = 0;
  60. tssDescriptor.segment_present = 1;
  61. tssDescriptor.granularity = 1;
  62. tssDescriptor.zero = 0;
  63. tssDescriptor.operation_size = 1;
  64. tssDescriptor.descriptor_type = 0;
  65. tssDescriptor.type = 9;
  66. flushGDT();
  67. }
  68. void Task::prepForIRETToNewTask()
  69. {
  70. redoKernelTaskTSS();
  71. s_kernelTask->tss().backlink = current->selector();
  72. loadTaskRegister(s_kernelTask->selector());
  73. }
  74. void Task::initialize()
  75. {
  76. current = nullptr;
  77. next_pid = 0;
  78. s_tasks = new InlineLinkedList<Task>;
  79. s_deadTasks = new InlineLinkedList<Task>;
  80. s_kernelTask = Task::createKernelTask(nullptr, "colonel");
  81. s_hostname = new String("birx");
  82. redoKernelTaskTSS();
  83. loadTaskRegister(s_kernelTask->selector());
  84. }
  85. #ifdef TASK_SANITY_CHECKS
  86. void Task::checkSanity(const char* msg)
  87. {
  88. char ch = current->name()[0];
  89. kprintf("<%p> %s{%u}%b [%d] :%b: sanity check <%s>\n",
  90. current->name().characters(),
  91. current->name().characters(),
  92. current->name().length(),
  93. current->name()[current->name().length() - 1],
  94. current->pid(), ch, msg ? msg : "");
  95. ASSERT((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'));
  96. }
  97. #endif
  98. void Task::allocateLDT()
  99. {
  100. ASSERT(!m_tss.ldt);
  101. static const WORD numLDTEntries = 4;
  102. WORD newLDTSelector = allocateGDTEntry();
  103. m_ldtEntries = new Descriptor[numLDTEntries];
  104. #if 0
  105. kprintf("new ldt selector = %x\n", newLDTSelector);
  106. kprintf("new ldt table at = %p\n", m_ldtEntries);
  107. kprintf("new ldt table size = %u\n", (numLDTEntries * 8) - 1);
  108. #endif
  109. Descriptor& ldt = getGDTEntry(newLDTSelector);
  110. ldt.setBase(m_ldtEntries);
  111. ldt.setLimit(numLDTEntries * 8 - 1);
  112. ldt.dpl = 0;
  113. ldt.segment_present = 1;
  114. ldt.granularity = 0;
  115. ldt.zero = 0;
  116. ldt.operation_size = 1;
  117. ldt.descriptor_type = 0;
  118. ldt.type = Descriptor::LDT;
  119. m_tss.ldt = newLDTSelector;
  120. }
  121. Vector<Task*> Task::allTasks()
  122. {
  123. InterruptDisabler disabler;
  124. Vector<Task*> tasks;
  125. tasks.ensureCapacity(s_tasks->sizeSlow());
  126. for (auto* task = s_tasks->head(); task; task = task->next())
  127. tasks.append(task);
  128. return tasks;
  129. }
  130. Task::Region* Task::allocateRegion(size_t size, String&& name)
  131. {
  132. // FIXME: This needs sanity checks. What if this overlaps existing regions?
  133. auto zone = MM.createZone(size);
  134. ASSERT(zone);
  135. m_regions.append(adopt(*new Region(m_nextRegion, size, move(zone), move(name))));
  136. m_nextRegion = m_nextRegion.offset(size).offset(16384);
  137. return m_regions.last().ptr();
  138. }
  139. bool Task::deallocateRegion(Region& region)
  140. {
  141. InterruptDisabler disabler;
  142. for (size_t i = 0; i < m_regions.size(); ++i) {
  143. if (m_regions[i].ptr() == &region) {
  144. MM.unmapRegion(*this, region);
  145. m_regions.remove(i);
  146. return true;
  147. }
  148. }
  149. return false;
  150. }
  151. Task::Region* Task::regionFromRange(LinearAddress laddr, size_t size)
  152. {
  153. for (auto& region : m_regions) {
  154. if (region->linearAddress == laddr && region->size == size)
  155. return region.ptr();
  156. }
  157. return nullptr;
  158. }
  159. int Task::sys$set_mmap_name(void* addr, size_t size, const char* name)
  160. {
  161. VALIDATE_USER_READ(name, strlen(name));
  162. auto* region = regionFromRange(LinearAddress((dword)addr), size);
  163. if (!region)
  164. return -EINVAL;
  165. region->name = name;
  166. return 0;
  167. }
  168. void* Task::sys$mmap(void* addr, size_t size)
  169. {
  170. InterruptDisabler disabler;
  171. // FIXME: Implement mapping at a client-preferred address.
  172. ASSERT(addr == nullptr);
  173. auto* region = allocateRegion(size, "mmap");
  174. if (!region)
  175. return (void*)-1;
  176. MM.mapRegion(*this, *region);
  177. return (void*)region->linearAddress.get();
  178. }
  179. int Task::sys$munmap(void* addr, size_t size)
  180. {
  181. InterruptDisabler disabler;
  182. auto* region = regionFromRange(LinearAddress((dword)addr), size);
  183. if (!region)
  184. return -1;
  185. if (!deallocateRegion(*region))
  186. return -1;
  187. return 0;
  188. }
  189. int Task::sys$gethostname(char* buffer, size_t size)
  190. {
  191. VALIDATE_USER_WRITE(buffer, size);
  192. auto hostname = getHostname();
  193. if (size < (hostname.length() + 1))
  194. return -ENAMETOOLONG;
  195. memcpy(buffer, hostname.characters(), size);
  196. return 0;
  197. }
  198. int Task::sys$spawn(const char* path, const char** args)
  199. {
  200. if (args) {
  201. for (size_t i = 0; args[i]; ++i) {
  202. VALIDATE_USER_READ(args[i], strlen(args[i]));
  203. }
  204. }
  205. int error = 0;
  206. auto* child = Task::createUserTask(path, m_uid, m_gid, m_pid, error, args, m_tty);
  207. if (child)
  208. return child->pid();
  209. return error;
  210. }
  211. Task* Task::createUserTask(const String& path, uid_t uid, gid_t gid, pid_t parentPID, int& error, const char** args, TTY* tty)
  212. {
  213. auto parts = path.split('/');
  214. if (parts.isEmpty()) {
  215. error = -ENOENT;
  216. return nullptr;
  217. }
  218. RetainPtr<VirtualFileSystem::Node> cwd;
  219. {
  220. InterruptDisabler disabler;
  221. if (auto* parentTask = Task::fromPID(parentPID))
  222. cwd = parentTask->m_cwd.copyRef();
  223. if (!cwd)
  224. cwd = VirtualFileSystem::the().root();
  225. }
  226. auto handle = VirtualFileSystem::the().open(path, error, 0, cwd ? cwd->inode : InodeIdentifier());
  227. if (!handle)
  228. return nullptr;
  229. if (!handle->metadata().mayExecute(uid, gid)) {
  230. error = -EACCES;
  231. return nullptr;
  232. }
  233. auto elfData = handle->readEntireFile();
  234. if (!elfData) {
  235. error = -EIO; // FIXME: Get a more detailed error from VFS.
  236. return nullptr;
  237. }
  238. Vector<String> taskArguments;
  239. if (args) {
  240. for (size_t i = 0; args[i]; ++i) {
  241. taskArguments.append(args[i]);
  242. }
  243. } else {
  244. taskArguments.append(parts.last());
  245. }
  246. Vector<String> taskEnvironment;
  247. taskEnvironment.append("PATH=/bin");
  248. taskEnvironment.append("SHELL=/bin/sh");
  249. taskEnvironment.append("TERM=console");
  250. taskEnvironment.append("HOME=/");
  251. InterruptDisabler disabler; // FIXME: Get rid of this, jesus christ. This "critical" section is HUGE.
  252. KernelPagingScope pagingScope;
  253. Task* t = new Task(parts.takeLast(), uid, gid, parentPID, Ring3, move(cwd), handle->vnode(), tty);
  254. t->m_arguments = move(taskArguments);
  255. t->m_initialEnvironment = move(taskEnvironment);
  256. ExecSpace space;
  257. Region* region = nullptr;
  258. byte* region_alias = nullptr;
  259. space.hookableAlloc = [&] (const String& name, size_t size) {
  260. if (!size)
  261. return (void*)nullptr;
  262. size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div?
  263. region = t->allocateRegion(size, String(name));
  264. ASSERT(region);
  265. region_alias = MM.create_kernel_alias_for_region(*region);
  266. return (void*)region_alias;
  267. };
  268. bool success = space.loadELF(move(elfData));
  269. if (!success) {
  270. MM.remove_kernel_alias_for_region(*region, region_alias);
  271. delete t;
  272. kprintf("Failure loading ELF %s\n", path.characters());
  273. error = -ENOEXEC;
  274. return nullptr;
  275. }
  276. space.forEachArea([&] (const String& name, dword offset, size_t size, LinearAddress laddr) {
  277. if (laddr.isNull())
  278. return;
  279. dword roundedOffset = offset & 0xfffff000;
  280. size_t roundedSize = 4096 * ceilDiv((offset - roundedOffset) + size, 4096u);
  281. LinearAddress roundedLaddr = laddr;
  282. roundedLaddr.mask(0xfffff000);
  283. t->m_subregions.append(make<Subregion>(*region, roundedOffset, roundedSize, roundedLaddr, String(name)));
  284. #ifdef SUBREGION_DEBUG
  285. kprintf(" req subregion %s (offset: %u, size: %u) @ %p\n", name.characters(), offset, size, laddr.get());
  286. kprintf("actual subregion %s (offset: %u, size: %u) @ %p\n", name.characters(), roundedOffset, roundedSize, roundedLaddr.get());
  287. #endif
  288. MM.mapSubregion(*t, *t->m_subregions.last());
  289. });
  290. t->m_tss.eip = (dword)space.symbolPtr("_start");
  291. if (!t->m_tss.eip) {
  292. // FIXME: This is ugly. If we need to do this, it should be at a different level.
  293. MM.remove_kernel_alias_for_region(*region, region_alias);
  294. delete t;
  295. error = -ENOEXEC;
  296. return nullptr;
  297. }
  298. MM.remove_kernel_alias_for_region(*region, region_alias);
  299. MM.mapRegionsForTask(*t);
  300. s_tasks->prepend(t);
  301. system.nprocess++;
  302. #ifdef TASK_DEBUG
  303. kprintf("Task %u (%s) spawned @ %p\n", t->pid(), t->name().characters(), t->m_tss.eip);
  304. #endif
  305. error = 0;
  306. return t;
  307. }
  308. int Task::sys$get_environment(char*** environ)
  309. {
  310. auto* region = allocateRegion(4096, "environ");
  311. if (!region)
  312. return -ENOMEM;
  313. MM.mapRegion(*this, *region);
  314. char* envpage = (char*)region->linearAddress.get();
  315. *environ = (char**)envpage;
  316. char* bufptr = envpage + (sizeof(char*) * (m_initialEnvironment.size() + 1));
  317. for (size_t i = 0; i < m_initialEnvironment.size(); ++i) {
  318. (*environ)[i] = bufptr;
  319. memcpy(bufptr, m_initialEnvironment[i].characters(), m_initialEnvironment[i].length());
  320. bufptr += m_initialEnvironment[i].length();
  321. *(bufptr++) = '\0';
  322. }
  323. (*environ)[m_initialEnvironment.size()] = nullptr;
  324. return 0;
  325. }
  326. int Task::sys$get_arguments(int* argc, char*** argv)
  327. {
  328. auto* region = allocateRegion(4096, "argv");
  329. if (!region)
  330. return -ENOMEM;
  331. MM.mapRegion(*this, *region);
  332. char* argpage = (char*)region->linearAddress.get();
  333. *argc = m_arguments.size();
  334. *argv = (char**)argpage;
  335. char* bufptr = argpage + (sizeof(char*) * m_arguments.size());
  336. for (size_t i = 0; i < m_arguments.size(); ++i) {
  337. (*argv)[i] = bufptr;
  338. memcpy(bufptr, m_arguments[i].characters(), m_arguments[i].length());
  339. bufptr += m_arguments[i].length();
  340. *(bufptr++) = '\0';
  341. }
  342. return 0;
  343. }
  344. Task* Task::createKernelTask(void (*e)(), String&& name)
  345. {
  346. Task* task = new Task(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0);
  347. task->m_tss.eip = (dword)e;
  348. if (task->pid() != 0) {
  349. InterruptDisabler disabler;
  350. s_tasks->prepend(task);
  351. system.nprocess++;
  352. #ifdef TASK_DEBUG
  353. kprintf("Kernel task %u (%s) spawned @ %p\n", task->pid(), task->name().characters(), task->m_tss.eip);
  354. #endif
  355. }
  356. return task;
  357. }
  358. Task::Task(String&& name, uid_t uid, gid_t gid, pid_t parentPID, RingLevel ring, RetainPtr<VirtualFileSystem::Node>&& cwd, RetainPtr<VirtualFileSystem::Node>&& executable, TTY* tty)
  359. : m_name(move(name))
  360. , m_pid(next_pid++)
  361. , m_uid(uid)
  362. , m_gid(gid)
  363. , m_state(Runnable)
  364. , m_ring(ring)
  365. , m_cwd(move(cwd))
  366. , m_executable(move(executable))
  367. , m_tty(tty)
  368. , m_parentPID(parentPID)
  369. {
  370. m_pageDirectory = (dword*)kmalloc_page_aligned(4096);
  371. MM.populate_page_directory(*this);
  372. if (tty) {
  373. m_fileHandles.append(tty->open(O_RDONLY)); // stdin
  374. m_fileHandles.append(tty->open(O_WRONLY)); // stdout
  375. m_fileHandles.append(tty->open(O_WRONLY)); // stderr
  376. } else {
  377. m_fileHandles.append(nullptr); // stdin
  378. m_fileHandles.append(nullptr); // stdout
  379. m_fileHandles.append(nullptr); // stderr
  380. }
  381. m_nextRegion = LinearAddress(0x10000000);
  382. memset(&m_tss, 0, sizeof(m_tss));
  383. if (isRing3()) {
  384. memset(&m_ldtEntries, 0, sizeof(m_ldtEntries));
  385. allocateLDT();
  386. }
  387. // Only IF is set when a task boots.
  388. m_tss.eflags = 0x0202;
  389. word cs, ds, ss;
  390. if (isRing0()) {
  391. cs = 0x08;
  392. ds = 0x10;
  393. ss = 0x10;
  394. } else {
  395. cs = 0x1b;
  396. ds = 0x23;
  397. ss = 0x23;
  398. }
  399. m_tss.ds = ds;
  400. m_tss.es = ds;
  401. m_tss.fs = ds;
  402. m_tss.gs = ds;
  403. m_tss.ss = ss;
  404. m_tss.cs = cs;
  405. m_tss.cr3 = (dword)m_pageDirectory;
  406. if (isRing0()) {
  407. // FIXME: This memory is leaked.
  408. // But uh, there's also no kernel task termination, so I guess it's not technically leaked...
  409. dword stackBottom = (dword)kmalloc_eternal(defaultStackSize);
  410. m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8;
  411. m_tss.esp = m_stackTop0;
  412. } else {
  413. auto* region = allocateRegion(defaultStackSize, "stack");
  414. ASSERT(region);
  415. m_stackTop3 = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8;
  416. m_tss.esp = m_stackTop3;
  417. }
  418. if (isRing3()) {
  419. // Ring3 tasks need a separate stack for Ring0.
  420. m_kernelStack = kmalloc(defaultStackSize);
  421. m_stackTop0 = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8;
  422. m_tss.ss0 = 0x10;
  423. m_tss.esp0 = m_stackTop0;
  424. }
  425. // HACK: Ring2 SS in the TSS is the current PID.
  426. m_tss.ss2 = m_pid;
  427. m_farPtr.offset = 0x98765432;
  428. ProcFileSystem::the().addProcess(*this);
  429. }
  430. Task::~Task()
  431. {
  432. InterruptDisabler disabler;
  433. ProcFileSystem::the().removeProcess(*this);
  434. system.nprocess--;
  435. delete [] m_ldtEntries;
  436. m_ldtEntries = nullptr;
  437. if (m_kernelStack) {
  438. kfree(m_kernelStack);
  439. m_kernelStack = nullptr;
  440. }
  441. }
  442. void Task::dumpRegions()
  443. {
  444. kprintf("Task %s(%u) regions:\n", name().characters(), pid());
  445. kprintf("BEGIN END SIZE NAME\n");
  446. for (auto& region : m_regions) {
  447. kprintf("%x -- %x %x %s\n",
  448. region->linearAddress.get(),
  449. region->linearAddress.offset(region->size - 1).get(),
  450. region->size,
  451. region->name.characters());
  452. }
  453. kprintf("Task %s(%u) subregions:\n", name().characters(), pid());
  454. kprintf("REGION OFFSET BEGIN END SIZE NAME\n");
  455. for (auto& subregion : m_subregions) {
  456. kprintf("%x %x %x -- %x %x %s\n",
  457. subregion->region->linearAddress.get(),
  458. subregion->offset,
  459. subregion->linearAddress.get(),
  460. subregion->linearAddress.offset(subregion->size - 1).get(),
  461. subregion->size,
  462. subregion->name.characters());
  463. }
  464. }
  465. void Task::notify_waiters(pid_t waitee, int exit_status, int signal)
  466. {
  467. ASSERT_INTERRUPTS_DISABLED();
  468. for (auto* task = s_tasks->head(); task; task = task->next()) {
  469. if (task->waitee() == waitee)
  470. task->m_waiteeStatus = (exit_status << 8) | (signal);
  471. }
  472. }
  473. void Task::sys$exit(int status)
  474. {
  475. cli();
  476. #ifdef TASK_DEBUG
  477. kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status);
  478. #endif
  479. setState(Exiting);
  480. s_tasks->remove(this);
  481. notify_waiters(m_pid, status, 0);
  482. if (!scheduleNewTask()) {
  483. kprintf("Task::sys$exit: Failed to schedule a new task :(\n");
  484. HANG;
  485. }
  486. s_deadTasks->append(this);
  487. switchNow();
  488. }
  489. void Task::murder(int signal)
  490. {
  491. ASSERT_INTERRUPTS_DISABLED();
  492. bool wasCurrent = current == this;
  493. setState(Exiting);
  494. s_tasks->remove(this);
  495. notify_waiters(m_pid, 0, signal);
  496. if (wasCurrent) {
  497. kprintf("Current task committing suicide!\n");
  498. if (!scheduleNewTask()) {
  499. kprintf("Task::murder: Failed to schedule a new task :(\n");
  500. HANG;
  501. }
  502. }
  503. s_deadTasks->append(this);
  504. if (wasCurrent)
  505. switchNow();
  506. }
  507. void Task::taskDidCrash(Task* crashedTask)
  508. {
  509. ASSERT_INTERRUPTS_DISABLED();
  510. if (crashedTask->state() == Crashing) {
  511. kprintf("Double crash :(\n");
  512. HANG;
  513. }
  514. crashedTask->setState(Crashing);
  515. crashedTask->dumpRegions();
  516. s_tasks->remove(crashedTask);
  517. notify_waiters(crashedTask->m_pid, 0, SIGSEGV);
  518. if (!scheduleNewTask()) {
  519. kprintf("Task::taskDidCrash: Failed to schedule a new task :(\n");
  520. HANG;
  521. }
  522. s_deadTasks->append(crashedTask);
  523. switchNow();
  524. }
  525. void Task::doHouseKeeping()
  526. {
  527. InterruptDisabler disabler;
  528. if (s_deadTasks->isEmpty())
  529. return;
  530. Task* next = nullptr;
  531. for (auto* deadTask = s_deadTasks->head(); deadTask; deadTask = next) {
  532. next = deadTask->next();
  533. delete deadTask;
  534. }
  535. s_deadTasks->clear();
  536. }
  537. void yield()
  538. {
  539. if (!current) {
  540. kprintf( "PANIC: yield() with !current" );
  541. HANG;
  542. }
  543. //kprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
  544. InterruptDisabler disabler;
  545. if (!scheduleNewTask())
  546. return;
  547. //kprintf("yield() jumping to new task: %x (%s)\n", current->farPtr().selector, current->name().characters());
  548. switchNow();
  549. }
  550. void switchNow()
  551. {
  552. Descriptor& descriptor = getGDTEntry(current->selector());
  553. descriptor.type = 9;
  554. flushGDT();
  555. asm("sti\n"
  556. "ljmp *(%%eax)\n"
  557. ::"a"(&current->farPtr())
  558. );
  559. }
  560. bool scheduleNewTask()
  561. {
  562. ASSERT_INTERRUPTS_DISABLED();
  563. if (!current) {
  564. // XXX: The first ever context_switch() goes to the idle task.
  565. // This to setup a reliable place we can return to.
  566. return contextSwitch(Task::kernelTask());
  567. }
  568. // Check and unblock tasks whose wait conditions have been met.
  569. for (auto* task = s_tasks->head(); task; task = task->next()) {
  570. if (task->state() == Task::BlockedSleep) {
  571. if (task->wakeupTime() <= system.uptime) {
  572. task->unblock();
  573. continue;
  574. }
  575. }
  576. if (task->state() == Task::BlockedWait) {
  577. if (!Task::fromPID(task->waitee())) {
  578. task->unblock();
  579. continue;
  580. }
  581. }
  582. if (task->state() == Task::BlockedRead) {
  583. ASSERT(task->m_fdBlockedOnRead != -1);
  584. if (task->m_fileHandles[task->m_fdBlockedOnRead]->hasDataAvailableForRead()) {
  585. task->unblock();
  586. continue;
  587. }
  588. }
  589. }
  590. #ifdef SCHEDULER_DEBUG
  591. dbgprintf("Scheduler choices:\n");
  592. for (auto* task = s_tasks->head(); task; task = task->next()) {
  593. //if (task->state() == Task::BlockedWait || task->state() == Task::BlockedSleep)
  594. // continue;
  595. dbgprintf("%w %s(%u)\n", task->state(), task->name().characters(), task->pid());
  596. }
  597. #endif
  598. auto* prevHead = s_tasks->head();
  599. for (;;) {
  600. // Move head to tail.
  601. s_tasks->append(s_tasks->removeHead());
  602. auto* task = s_tasks->head();
  603. if (task->state() == Task::Runnable || task->state() == Task::Running) {
  604. #ifdef SCHEDULER_DEBUG
  605. dbgprintf("switch to %s(%u) (%p vs %p)\n", task->name().characters(), task->pid(), task, current);
  606. #endif
  607. return contextSwitch(task);
  608. }
  609. if (task == prevHead) {
  610. // Back at task_head, nothing wants to run.
  611. kprintf("Nothing wants to run!\n");
  612. kprintf("PID OWNER STATE NSCHED NAME\n");
  613. for (auto* task = s_tasks->head(); task; task = task->next()) {
  614. kprintf("%w %w:%w %b %w %s\n",
  615. task->pid(),
  616. task->uid(),
  617. task->gid(),
  618. task->state(),
  619. task->timesScheduled(),
  620. task->name().characters());
  621. }
  622. kprintf("Switch to kernel task\n");
  623. return contextSwitch(Task::kernelTask());
  624. }
  625. }
  626. }
  627. static bool contextSwitch(Task* t)
  628. {
  629. t->setTicksLeft(5);
  630. t->didSchedule();
  631. if (current == t)
  632. return false;
  633. #ifdef SCHEDULER_DEBUG
  634. // Some sanity checking to force a crash earlier.
  635. auto csRPL = t->tss().cs & 3;
  636. auto ssRPL = t->tss().ss & 3;
  637. if (csRPL != ssRPL) {
  638. kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n",
  639. current->name().characters(), current->pid(),
  640. t->name().characters(), t->pid()
  641. );
  642. kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip);
  643. kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp);
  644. ASSERT(csRPL == ssRPL);
  645. }
  646. #endif
  647. if (current) {
  648. // If the last task hasn't blocked (still marked as running),
  649. // mark it as runnable for the next round.
  650. if (current->state() == Task::Running)
  651. current->setState(Task::Runnable);
  652. }
  653. current = t;
  654. t->setState(Task::Running);
  655. if (!t->selector()) {
  656. t->setSelector(allocateGDTEntry());
  657. auto& descriptor = getGDTEntry(t->selector());
  658. descriptor.setBase(&t->tss());
  659. descriptor.setLimit(0xffff);
  660. descriptor.dpl = 0;
  661. descriptor.segment_present = 1;
  662. descriptor.granularity = 1;
  663. descriptor.zero = 0;
  664. descriptor.operation_size = 1;
  665. descriptor.descriptor_type = 0;
  666. }
  667. auto& descriptor = getGDTEntry(t->selector());
  668. descriptor.type = 11; // Busy TSS
  669. flushGDT();
  670. return true;
  671. }
  672. Task* Task::fromPID(pid_t pid)
  673. {
  674. ASSERT_INTERRUPTS_DISABLED();
  675. for (auto* task = s_tasks->head(); task; task = task->next()) {
  676. if (task->pid() == pid)
  677. return task;
  678. }
  679. return nullptr;
  680. }
  681. FileHandle* Task::fileHandleIfExists(int fd)
  682. {
  683. if (fd < 0)
  684. return nullptr;
  685. if ((unsigned)fd < m_fileHandles.size())
  686. return m_fileHandles[fd].ptr();
  687. return nullptr;
  688. }
  689. ssize_t Task::sys$get_dir_entries(int fd, void* buffer, size_t size)
  690. {
  691. VALIDATE_USER_WRITE(buffer, size);
  692. auto* handle = fileHandleIfExists(fd);
  693. if (!handle)
  694. return -EBADF;
  695. return handle->get_dir_entries((byte*)buffer, size);
  696. }
  697. int Task::sys$lseek(int fd, off_t offset, int whence)
  698. {
  699. auto* handle = fileHandleIfExists(fd);
  700. if (!handle)
  701. return -EBADF;
  702. return handle->seek(offset, whence);
  703. }
  704. int Task::sys$ttyname_r(int fd, char* buffer, size_t size)
  705. {
  706. VALIDATE_USER_WRITE(buffer, size);
  707. auto* handle = fileHandleIfExists(fd);
  708. if (!handle)
  709. return -EBADF;
  710. if (!handle->isTTY())
  711. return -ENOTTY;
  712. auto ttyName = handle->tty()->ttyName();
  713. if (size < ttyName.length() + 1)
  714. return -ERANGE;
  715. strcpy(buffer, ttyName.characters());
  716. return 0;
  717. }
  718. ssize_t Task::sys$write(int fd, const void* data, size_t size)
  719. {
  720. VALIDATE_USER_READ(data, size);
  721. #ifdef DEBUG_IO
  722. kprintf("Task::sys$write: called(%d, %p, %u)\n", fd, data, size);
  723. #endif
  724. auto* handle = fileHandleIfExists(fd);
  725. #ifdef DEBUG_IO
  726. kprintf("Task::sys$write: handle=%p\n", handle);
  727. #endif
  728. if (!handle)
  729. return -EBADF;
  730. auto nwritten = handle->write((const byte*)data, size);
  731. #ifdef DEBUG_IO
  732. kprintf("Task::sys$write: nwritten=%u\n", nwritten);
  733. #endif
  734. return nwritten;
  735. }
  736. ssize_t Task::sys$read(int fd, void* outbuf, size_t nread)
  737. {
  738. VALIDATE_USER_WRITE(outbuf, nread);
  739. #ifdef DEBUG_IO
  740. kprintf("Task::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread);
  741. #endif
  742. auto* handle = fileHandleIfExists(fd);
  743. #ifdef DEBUG_IO
  744. kprintf("Task::sys$read: handle=%p\n", handle);
  745. #endif
  746. if (!handle)
  747. return -EBADF;
  748. if (handle->isBlocking()) {
  749. if (!handle->hasDataAvailableForRead()) {
  750. m_fdBlockedOnRead = fd;
  751. block(BlockedRead);
  752. yield();
  753. }
  754. }
  755. nread = handle->read((byte*)outbuf, nread);
  756. #ifdef DEBUG_IO
  757. kprintf("Task::sys$read: nread=%u\n", nread);
  758. #endif
  759. return nread;
  760. }
  761. int Task::sys$close(int fd)
  762. {
  763. auto* handle = fileHandleIfExists(fd);
  764. if (!handle)
  765. return -EBADF;
  766. // FIXME: Implement.
  767. return 0;
  768. }
  769. int Task::sys$lstat(const char* path, Unix::stat* statbuf)
  770. {
  771. VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat));
  772. int error;
  773. auto handle = VirtualFileSystem::the().open(move(path), error, O_NOFOLLOW_NOERROR, cwdInode());
  774. if (!handle)
  775. return error;
  776. handle->stat(statbuf);
  777. return 0;
  778. }
  779. int Task::sys$stat(const char* path, Unix::stat* statbuf)
  780. {
  781. VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat));
  782. int error;
  783. auto handle = VirtualFileSystem::the().open(move(path), error, 0, cwdInode());
  784. if (!handle)
  785. return error;
  786. handle->stat(statbuf);
  787. return 0;
  788. }
  789. int Task::sys$readlink(const char* path, char* buffer, size_t size)
  790. {
  791. VALIDATE_USER_READ(path, strlen(path));
  792. VALIDATE_USER_WRITE(buffer, size);
  793. int error;
  794. auto handle = VirtualFileSystem::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, cwdInode());
  795. if (!handle)
  796. return error;
  797. if (!handle->metadata().isSymbolicLink())
  798. return -EINVAL;
  799. auto contents = handle->readEntireFile();
  800. if (!contents)
  801. return -EIO; // FIXME: Get a more detailed error from VFS.
  802. memcpy(buffer, contents.pointer(), min(size, contents.size()));
  803. if (contents.size() + 1 < size)
  804. buffer[contents.size()] = '\0';
  805. return 0;
  806. }
  807. int Task::sys$chdir(const char* path)
  808. {
  809. VALIDATE_USER_READ(path, strlen(path));
  810. int error;
  811. auto handle = VirtualFileSystem::the().open(path, error, 0, cwdInode());
  812. if (!handle)
  813. return error;
  814. if (!handle->isDirectory())
  815. return -ENOTDIR;
  816. m_cwd = handle->vnode();
  817. return 0;
  818. }
  819. int Task::sys$getcwd(char* buffer, size_t size)
  820. {
  821. VALIDATE_USER_WRITE(buffer, size);
  822. auto path = VirtualFileSystem::the().absolutePath(cwdInode());
  823. if (path.isNull())
  824. return -EINVAL;
  825. if (size < path.length() + 1)
  826. return -ERANGE;
  827. strcpy(buffer, path.characters());
  828. return -ENOTIMPL;
  829. }
  830. int Task::sys$open(const char* path, int options)
  831. {
  832. #ifdef DEBUG_IO
  833. kprintf("Task::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength);
  834. #endif
  835. VALIDATE_USER_READ(path, strlen(path));
  836. if (m_fileHandles.size() >= m_maxFileHandles)
  837. return -EMFILE;
  838. int error;
  839. auto handle = VirtualFileSystem::the().open(path, error, options, cwdInode());
  840. if (!handle)
  841. return error;
  842. if (options & O_DIRECTORY && !handle->isDirectory())
  843. return -ENOTDIR; // FIXME: This should be handled by VFS::open.
  844. int fd = m_fileHandles.size();
  845. handle->setFD(fd);
  846. m_fileHandles.append(move(handle));
  847. return fd;
  848. }
  849. int Task::sys$uname(utsname* buf)
  850. {
  851. VALIDATE_USER_WRITE(buf, sizeof(utsname));
  852. strcpy(buf->sysname, "Serenity");
  853. strcpy(buf->release, "1.0-dev");
  854. strcpy(buf->version, "FIXME");
  855. strcpy(buf->machine, "i386");
  856. strcpy(buf->nodename, getHostname().characters());
  857. return 0;
  858. }
  859. int Task::sys$kill(pid_t pid, int sig)
  860. {
  861. (void) sig;
  862. if (pid == 0) {
  863. // FIXME: Send to same-group processes.
  864. ASSERT(pid != 0);
  865. }
  866. if (pid == -1) {
  867. // FIXME: Send to all processes.
  868. ASSERT(pid != -1);
  869. }
  870. ASSERT(pid != current->pid()); // FIXME: Support this scenario.
  871. InterruptDisabler disabler;
  872. auto* peer = Task::fromPID(pid);
  873. if (!peer)
  874. return -ESRCH;
  875. if (sig == SIGKILL) {
  876. peer->murder(SIGKILL);
  877. return 0;
  878. } else {
  879. ASSERT_NOT_REACHED();
  880. }
  881. return -1;
  882. }
  883. int Task::sys$sleep(unsigned seconds)
  884. {
  885. if (!seconds)
  886. return 0;
  887. sleep(seconds * TICKS_PER_SECOND);
  888. return 0;
  889. }
  890. int Task::sys$gettimeofday(timeval* tv)
  891. {
  892. VALIDATE_USER_WRITE(tv, sizeof(tv));
  893. InterruptDisabler disabler;
  894. auto now = RTC::now();
  895. tv->tv_sec = now;
  896. tv->tv_usec = 0;
  897. return 0;
  898. }
  899. uid_t Task::sys$getuid()
  900. {
  901. return m_uid;
  902. }
  903. gid_t Task::sys$getgid()
  904. {
  905. return m_gid;
  906. }
  907. pid_t Task::sys$getpid()
  908. {
  909. return m_pid;
  910. }
  911. pid_t Task::sys$waitpid(pid_t waitee, int* wstatus, int options)
  912. {
  913. if (wstatus)
  914. VALIDATE_USER_WRITE(wstatus, sizeof(int));
  915. InterruptDisabler disabler;
  916. if (!Task::fromPID(waitee))
  917. return -1;
  918. m_waitee = waitee;
  919. m_waiteeStatus = 0;
  920. block(BlockedWait);
  921. yield();
  922. if (wstatus)
  923. *wstatus = m_waiteeStatus;
  924. return m_waitee;
  925. }
  926. void Task::unblock()
  927. {
  928. ASSERT(m_state != Task::Runnable && m_state != Task::Running);
  929. system.nblocked--;
  930. m_state = Task::Runnable;
  931. }
  932. void Task::block(Task::State state)
  933. {
  934. ASSERT(current->state() == Task::Running);
  935. system.nblocked++;
  936. current->setState(state);
  937. }
  938. void block(Task::State state)
  939. {
  940. current->block(state);
  941. yield();
  942. }
  943. void sleep(DWORD ticks)
  944. {
  945. ASSERT(current->state() == Task::Running);
  946. current->setWakeupTime(system.uptime + ticks);
  947. current->block(Task::BlockedSleep);
  948. yield();
  949. }
  950. Task* Task::kernelTask()
  951. {
  952. ASSERT(s_kernelTask);
  953. return s_kernelTask;
  954. }
  955. Task::Region::Region(LinearAddress a, size_t s, RetainPtr<Zone>&& z, String&& n)
  956. : linearAddress(a)
  957. , size(s)
  958. , zone(move(z))
  959. , name(move(n))
  960. {
  961. }
  962. Task::Region::~Region()
  963. {
  964. }
  965. Task::Subregion::Subregion(Region& r, dword o, size_t s, LinearAddress l, String&& n)\
  966. : region(r)
  967. , offset(o)
  968. , size(s)
  969. , linearAddress(l)
  970. , name(move(n))
  971. {
  972. }
  973. Task::Subregion::~Subregion()
  974. {
  975. }
  976. bool Task::isValidAddressForKernel(LinearAddress laddr) const
  977. {
  978. // We check extra carefully here since the first 4MB of the address space is identity-mapped.
  979. // This code allows access outside of the known used address ranges to get caught.
  980. InterruptDisabler disabler;
  981. if (laddr.get() >= ksyms().first().address && laddr.get() <= ksyms().last().address)
  982. return true;
  983. if (is_kmalloc_address((void*)laddr.get()))
  984. return true;
  985. return validate_user_read(laddr);
  986. }
  987. bool Task::validate_user_read(LinearAddress laddr) const
  988. {
  989. InterruptDisabler disabler;
  990. return MM.validate_user_read(*this, laddr);
  991. }
  992. bool Task::validate_user_write(LinearAddress laddr) const
  993. {
  994. InterruptDisabler disabler;
  995. return MM.validate_user_write(*this, laddr);
  996. }