MemoryManager.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Task.h"
  8. //#define MM_DEBUG
  9. static MemoryManager* s_the;
  10. MemoryManager& MM
  11. {
  12. return *s_the;
  13. }
  14. MemoryManager::MemoryManager()
  15. {
  16. m_kernel_page_directory = (dword*)0x5000;
  17. m_pageTableZero = (dword*)0x6000;
  18. m_pageTableOne = (dword*)0x7000;
  19. m_next_laddr.set(0xd0000000);
  20. initializePaging();
  21. }
  22. MemoryManager::~MemoryManager()
  23. {
  24. }
  25. void MemoryManager::populate_page_directory(Task& task)
  26. {
  27. memset(task.m_pageDirectory, 0, 4096);
  28. task.m_pageDirectory[0] = m_kernel_page_directory[0];
  29. task.m_pageDirectory[1] = m_kernel_page_directory[1];
  30. }
  31. void MemoryManager::initializePaging()
  32. {
  33. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  34. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  35. memset(m_pageTableZero, 0, 4096);
  36. memset(m_pageTableOne, 0, 4096);
  37. memset(m_kernel_page_directory, 0, 4096);
  38. #ifdef MM_DEBUG
  39. kprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
  40. #endif
  41. // Make null dereferences crash.
  42. protectMap(LinearAddress(0), 4 * KB);
  43. // The bottom 4 MB are identity mapped & supervisor only. Every process shares this mapping.
  44. identityMap(LinearAddress(4096), 4 * MB);
  45. for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE) {
  46. m_freePages.append(PhysicalAddress(i));
  47. }
  48. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
  49. asm volatile(
  50. "movl %cr0, %eax\n"
  51. "orl $0x80000001, %eax\n"
  52. "movl %eax, %cr0\n"
  53. );
  54. }
  55. void* MemoryManager::allocatePageTable()
  56. {
  57. auto ppages = allocatePhysicalPages(1);
  58. dword address = ppages[0].get();
  59. identityMap(LinearAddress(address), 4096);
  60. memset((void*)address, 0, 4096);
  61. return (void*)address;
  62. }
  63. auto MemoryManager::ensurePTE(dword* page_directory, LinearAddress laddr) -> PageTableEntry
  64. {
  65. ASSERT_INTERRUPTS_DISABLED();
  66. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  67. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  68. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory[pageDirectoryIndex]);
  69. if (!pde.isPresent()) {
  70. #ifdef MM_DEBUG
  71. dbgprintf("MM: PDE %u not present, allocating\n", pageDirectoryIndex);
  72. #endif
  73. if (pageDirectoryIndex == 0) {
  74. pde.setPageTableBase((dword)m_pageTableZero);
  75. pde.setUserAllowed(false);
  76. pde.setPresent(true);
  77. pde.setWritable(true);
  78. } else if (pageDirectoryIndex == 1) {
  79. pde.setPageTableBase((dword)m_pageTableOne);
  80. pde.setUserAllowed(false);
  81. pde.setPresent(true);
  82. pde.setWritable(true);
  83. } else {
  84. auto* pageTable = allocatePageTable();
  85. #ifdef MM_DEBUG
  86. dbgprintf("MM: PDE %x allocated page table #%u (for laddr=%p) at %p\n", page_directory, pageDirectoryIndex, laddr.get(), pageTable);
  87. #endif
  88. pde.setPageTableBase((dword)pageTable);
  89. pde.setUserAllowed(true);
  90. pde.setPresent(true);
  91. pde.setWritable(true);
  92. }
  93. }
  94. return PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  95. }
  96. void MemoryManager::protectMap(LinearAddress linearAddress, size_t length)
  97. {
  98. InterruptDisabler disabler;
  99. // FIXME: ASSERT(linearAddress is 4KB aligned);
  100. for (dword offset = 0; offset < length; offset += 4096) {
  101. auto pteAddress = linearAddress.offset(offset);
  102. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  103. pte.setPhysicalPageBase(pteAddress.get());
  104. pte.setUserAllowed(false);
  105. pte.setPresent(false);
  106. pte.setWritable(false);
  107. flushTLB(pteAddress);
  108. }
  109. }
  110. void MemoryManager::identityMap(LinearAddress linearAddress, size_t length)
  111. {
  112. InterruptDisabler disabler;
  113. // FIXME: ASSERT(linearAddress is 4KB aligned);
  114. for (dword offset = 0; offset < length; offset += 4096) {
  115. auto pteAddress = linearAddress.offset(offset);
  116. auto pte = ensurePTE(m_kernel_page_directory, pteAddress);
  117. pte.setPhysicalPageBase(pteAddress.get());
  118. pte.setUserAllowed(false);
  119. pte.setPresent(true);
  120. pte.setWritable(true);
  121. flushTLB(pteAddress);
  122. }
  123. }
  124. void MemoryManager::initialize()
  125. {
  126. s_the = new MemoryManager;
  127. }
  128. PageFaultResponse MemoryManager::handlePageFault(const PageFault& fault)
  129. {
  130. ASSERT_INTERRUPTS_DISABLED();
  131. kprintf("MM: handlePageFault(%w) at laddr=%p\n", fault.code(), fault.address().get());
  132. if (fault.isNotPresent()) {
  133. kprintf(" >> NP fault!\n");
  134. } else if (fault.isProtectionViolation()) {
  135. kprintf(" >> PV fault!\n");
  136. }
  137. return PageFaultResponse::ShouldCrash;
  138. }
  139. void MemoryManager::registerZone(Zone& zone)
  140. {
  141. ASSERT_INTERRUPTS_DISABLED();
  142. m_zones.set(&zone);
  143. }
  144. void MemoryManager::unregisterZone(Zone& zone)
  145. {
  146. ASSERT_INTERRUPTS_DISABLED();
  147. m_zones.remove(&zone);
  148. m_freePages.append(move(zone.m_pages));
  149. }
  150. Zone::Zone(Vector<PhysicalAddress>&& pages)
  151. : m_pages(move(pages))
  152. {
  153. MM.registerZone(*this);
  154. }
  155. Zone::~Zone()
  156. {
  157. MM.unregisterZone(*this);
  158. }
  159. RetainPtr<Zone> MemoryManager::createZone(size_t size)
  160. {
  161. InterruptDisabler disabler;
  162. auto pages = allocatePhysicalPages(ceilDiv(size, PAGE_SIZE));
  163. if (pages.isEmpty()) {
  164. kprintf("MM: createZone: no physical pages for size %u\n", size);
  165. return nullptr;
  166. }
  167. return adopt(*new Zone(move(pages)));
  168. }
  169. Vector<PhysicalAddress> MemoryManager::allocatePhysicalPages(size_t count)
  170. {
  171. InterruptDisabler disabler;
  172. if (count > m_freePages.size())
  173. return { };
  174. Vector<PhysicalAddress> pages;
  175. pages.ensureCapacity(count);
  176. for (size_t i = 0; i < count; ++i)
  177. pages.append(m_freePages.takeLast());
  178. return pages;
  179. }
  180. byte* MemoryManager::quickMapOnePage(PhysicalAddress physicalAddress)
  181. {
  182. ASSERT_INTERRUPTS_DISABLED();
  183. auto pte = ensurePTE(m_kernel_page_directory, LinearAddress(4 * MB));
  184. kprintf("MM: quickmap %x @ %x {pte @ %p}\n", physicalAddress.get(), 4*MB, pte.ptr());
  185. pte.setPhysicalPageBase(physicalAddress.pageBase());
  186. pte.setPresent(true);
  187. pte.setWritable(true);
  188. flushTLB(LinearAddress(4 * MB));
  189. return (byte*)(4 * MB);
  190. }
  191. void MemoryManager::enter_kernel_paging_scope()
  192. {
  193. InterruptDisabler disabler;
  194. current->m_tss.cr3 = (dword)m_kernel_page_directory;
  195. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
  196. }
  197. void MemoryManager::enter_task_paging_scope(Task& task)
  198. {
  199. InterruptDisabler disabler;
  200. current->m_tss.cr3 = (dword)task.m_pageDirectory;
  201. asm volatile("movl %%eax, %%cr3"::"a"(task.m_pageDirectory));
  202. }
  203. void MemoryManager::flushEntireTLB()
  204. {
  205. asm volatile(
  206. "mov %cr3, %eax\n"
  207. "mov %eax, %cr3\n"
  208. );
  209. }
  210. void MemoryManager::flushTLB(LinearAddress laddr)
  211. {
  212. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()));
  213. }
  214. void MemoryManager::map_region_at_address(dword* page_directory, Task::Region& region, LinearAddress laddr)
  215. {
  216. InterruptDisabler disabler;
  217. auto& zone = *region.zone;
  218. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  219. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  220. auto pte = ensurePTE(page_directory, page_laddr);
  221. pte.setPhysicalPageBase(zone.m_pages[i].get());
  222. pte.setPresent(true);
  223. pte.setWritable(true);
  224. pte.setUserAllowed(true);
  225. flushTLB(page_laddr);
  226. #ifdef MM_DEBUG
  227. dbgprintf("MM: >> map_region_at_address (PD=%x) L%x => P%x\n", page_directory, page_laddr, zone.m_pages[i].get());
  228. #endif
  229. }
  230. }
  231. void MemoryManager::unmap_range(dword* page_directory, LinearAddress laddr, size_t size)
  232. {
  233. ASSERT((size % PAGE_SIZE) == 0);
  234. InterruptDisabler disabler;
  235. size_t numPages = size / 4096;
  236. for (size_t i = 0; i < numPages; ++i) {
  237. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  238. auto pte = ensurePTE(page_directory, page_laddr);
  239. pte.setPhysicalPageBase(0);
  240. pte.setPresent(false);
  241. pte.setWritable(false);
  242. pte.setUserAllowed(false);
  243. flushTLB(page_laddr);
  244. #ifdef MM_DEBUG
  245. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  246. #endif
  247. }
  248. }
  249. LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
  250. {
  251. ASSERT((size % PAGE_SIZE) == 0);
  252. // FIXME: Recycle ranges!
  253. auto laddr = m_next_laddr;
  254. m_next_laddr.set(m_next_laddr.get() + size);
  255. return laddr;
  256. }
  257. byte* MemoryManager::create_kernel_alias_for_region(Task::Region& region)
  258. {
  259. InterruptDisabler disabler;
  260. auto laddr = allocate_linear_address_range(region.size);
  261. map_region_at_address(m_kernel_page_directory, region, laddr);
  262. return laddr.asPtr();
  263. }
  264. void MemoryManager::remove_kernel_alias_for_region(Task::Region& region, byte* addr)
  265. {
  266. unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
  267. }
  268. bool MemoryManager::unmapRegion(Task& task, Task::Region& region)
  269. {
  270. InterruptDisabler disabler;
  271. auto& zone = *region.zone;
  272. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  273. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  274. auto pte = ensurePTE(task.m_pageDirectory, laddr);
  275. pte.setPhysicalPageBase(0);
  276. pte.setPresent(false);
  277. pte.setWritable(false);
  278. pte.setUserAllowed(false);
  279. flushTLB(laddr);
  280. #ifdef MM_DEBUG
  281. //dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, zone.m_pages[i].get());
  282. #endif
  283. }
  284. return true;
  285. }
  286. bool MemoryManager::unmapSubregion(Task& task, Task::Subregion& subregion)
  287. {
  288. InterruptDisabler disabler;
  289. size_t numPages = subregion.size / 4096;
  290. ASSERT(numPages);
  291. for (size_t i = 0; i < numPages; ++i) {
  292. auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE);
  293. auto pte = ensurePTE(task.m_pageDirectory, laddr);
  294. pte.setPhysicalPageBase(0);
  295. pte.setPresent(false);
  296. pte.setWritable(false);
  297. pte.setUserAllowed(false);
  298. flushTLB(laddr);
  299. #ifdef MM_DEBUG
  300. //dbgprintf("MM: >> Unmapped subregion %s L%x => P%x <<\n", subregion.name.characters(), laddr, zone.m_pages[i].get());
  301. #endif
  302. }
  303. return true;
  304. }
  305. bool MemoryManager::mapSubregion(Task& task, Task::Subregion& subregion)
  306. {
  307. InterruptDisabler disabler;
  308. auto& region = *subregion.region;
  309. auto& zone = *region.zone;
  310. size_t firstPage = subregion.offset / 4096;
  311. size_t numPages = subregion.size / 4096;
  312. ASSERT(numPages);
  313. for (size_t i = 0; i < numPages; ++i) {
  314. auto laddr = subregion.linearAddress.offset(i * PAGE_SIZE);
  315. auto pte = ensurePTE(task.m_pageDirectory, laddr);
  316. pte.setPhysicalPageBase(zone.m_pages[firstPage + i].get());
  317. pte.setPresent(true);
  318. pte.setWritable(true);
  319. pte.setUserAllowed(true);
  320. flushTLB(laddr);
  321. #ifdef MM_DEBUG
  322. //dbgprintf("MM: >> Mapped subregion %s L%x => P%x (%u into region)\n", subregion.name.characters(), laddr, zone.m_pages[firstPage + i].get(), subregion.offset);
  323. #endif
  324. }
  325. return true;
  326. }
  327. bool MemoryManager::mapRegion(Task& task, Task::Region& region)
  328. {
  329. map_region_at_address(task.m_pageDirectory, region, region.linearAddress);
  330. return true;
  331. }
  332. bool MemoryManager::validate_user_read(const Task& task, LinearAddress laddr) const
  333. {
  334. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  335. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  336. auto pde = PageDirectoryEntry(&task.m_pageDirectory[pageDirectoryIndex]);
  337. if (!pde.isPresent())
  338. return false;
  339. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  340. if (!pte.isPresent())
  341. return false;
  342. if (!pte.isUserAllowed())
  343. return false;
  344. return true;
  345. }
  346. bool MemoryManager::validate_user_write(const Task& task, LinearAddress laddr) const
  347. {
  348. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  349. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  350. auto pde = PageDirectoryEntry(&task.m_pageDirectory[pageDirectoryIndex]);
  351. if (!pde.isPresent())
  352. return false;
  353. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  354. if (!pte.isPresent())
  355. return false;
  356. if (!pte.isUserAllowed())
  357. return false;
  358. if (!pte.isWritable())
  359. return false;
  360. return true;
  361. }
  362. bool MemoryManager::mapRegionsForTask(Task& task)
  363. {
  364. ASSERT_INTERRUPTS_DISABLED();
  365. for (auto& region : task.m_regions) {
  366. if (!mapRegion(task, *region))
  367. return false;
  368. }
  369. for (auto& subregion : task.m_subregions) {
  370. if (!mapSubregion(task, *subregion))
  371. return false;
  372. }
  373. return true;
  374. }
  375. bool copyToZone(Zone& zone, const void* data, size_t size)
  376. {
  377. if (zone.size() < size) {
  378. kprintf("MM: copyToZone: can't fit %u bytes into zone with size %u\n", size, zone.size());
  379. return false;
  380. }
  381. InterruptDisabler disabler;
  382. auto* dataptr = (const byte*)data;
  383. size_t remaining = size;
  384. for (size_t i = 0; i < zone.m_pages.size(); ++i) {
  385. byte* dest = MM.quickMapOnePage(zone.m_pages[i]);
  386. kprintf("memcpy(%p, %p, %u)\n", dest, dataptr, min(PAGE_SIZE, remaining));
  387. memcpy(dest, dataptr, min(PAGE_SIZE, remaining));
  388. dataptr += PAGE_SIZE;
  389. remaining -= PAGE_SIZE;
  390. }
  391. return true;
  392. }