MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. //#define MM_DEBUG
  10. //#define PAGE_FAULT_DEBUG
  11. #define SCRUB_DEALLOCATED_PAGE_TABLES
  12. static MemoryManager* s_the;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. m_kernel_page_directory = (PageDirectory*)0x4000;
  20. m_page_table_zero = (dword*)0x6000;
  21. m_page_table_one = (dword*)0x7000;
  22. m_next_laddr.set(0xd0000000);
  23. initialize_paging();
  24. }
  25. MemoryManager::~MemoryManager()
  26. {
  27. }
  28. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  29. {
  30. memset(&page_directory, 0, sizeof(PageDirectory));
  31. page_directory.entries[0] = m_kernel_page_directory->entries[0];
  32. page_directory.entries[1] = m_kernel_page_directory->entries[1];
  33. }
  34. void MemoryManager::release_page_directory(PageDirectory& page_directory)
  35. {
  36. ASSERT_INTERRUPTS_DISABLED();
  37. #ifdef MM_DEBUG
  38. dbgprintf("MM: release_page_directory for PD K%x\n", &page_directory);
  39. #endif
  40. for (size_t i = 0; i < 1024; ++i) {
  41. auto& page_table = page_directory.physical_pages[i];
  42. if (!page_table.is_null()) {
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: deallocating user page table P%x\n", page_table->paddr().get());
  45. #endif
  46. deallocate_page_table(page_directory, i);
  47. }
  48. }
  49. #ifdef SCRUB_DEALLOCATED_PAGE_TABLES
  50. memset(&page_directory, 0xc9, sizeof(PageDirectory));
  51. #endif
  52. kfree_aligned(&page_directory);
  53. }
  54. void MemoryManager::initialize_paging()
  55. {
  56. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  57. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  58. memset(m_page_table_zero, 0, PAGE_SIZE);
  59. memset(m_page_table_one, 0, PAGE_SIZE);
  60. memset(m_kernel_page_directory, 0, sizeof(PageDirectory));
  61. #ifdef MM_DEBUG
  62. dbgprintf("MM: Kernel page directory @ %p\n", m_kernel_page_directory);
  63. #endif
  64. // Make null dereferences crash.
  65. map_protected(LinearAddress(0), PAGE_SIZE);
  66. // The bottom 4 MB are identity mapped & supervisor only. Every process shares these mappings.
  67. create_identity_mapping(LinearAddress(PAGE_SIZE), 4 * MB);
  68. // The physical pages 4 MB through 8 MB are available for allocation.
  69. for (size_t i = (4 * MB) + PAGE_SIZE; i < (8 * MB); i += PAGE_SIZE)
  70. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i))));
  71. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory));
  72. asm volatile(
  73. "movl %cr0, %eax\n"
  74. "orl $0x80000001, %eax\n"
  75. "movl %eax, %cr0\n"
  76. );
  77. }
  78. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  79. {
  80. auto& page_directory_physical_ptr = page_directory.physical_pages[index];
  81. ASSERT(!page_directory_physical_ptr);
  82. auto physical_page = allocate_physical_page();
  83. if (!physical_page)
  84. return nullptr;
  85. dword address = physical_page->paddr().get();
  86. create_identity_mapping(LinearAddress(address), PAGE_SIZE);
  87. memset((void*)address, 0, PAGE_SIZE);
  88. page_directory.physical_pages[index] = move(physical_page);
  89. return page_directory.physical_pages[index];
  90. }
  91. void MemoryManager::deallocate_page_table(PageDirectory& page_directory, unsigned index)
  92. {
  93. auto& physical_page = page_directory.physical_pages[index];
  94. ASSERT(physical_page);
  95. //FIXME: This line is buggy and effectful somehow :(
  96. //ASSERT(!m_free_physical_pages.contains_slow(physical_page));
  97. for (size_t i = 0; i < MM.m_free_physical_pages.size(); ++i) {
  98. ASSERT(MM.m_free_physical_pages[i].ptr() != physical_page.ptr());
  99. }
  100. remove_identity_mapping(LinearAddress(physical_page->paddr().get()), PAGE_SIZE);
  101. page_directory.physical_pages[index] = nullptr;
  102. }
  103. void MemoryManager::remove_identity_mapping(LinearAddress laddr, size_t size)
  104. {
  105. InterruptDisabler disabler;
  106. // FIXME: ASSERT(laddr is 4KB aligned);
  107. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  108. auto pte_address = laddr.offset(offset);
  109. auto pte = ensure_pte(m_kernel_page_directory, pte_address);
  110. pte.set_physical_page_base(0);
  111. pte.set_user_allowed(false);
  112. pte.set_present(true);
  113. pte.set_writable(true);
  114. flush_tlb(pte_address);
  115. }
  116. }
  117. auto MemoryManager::ensure_pte(PageDirectory* page_directory, LinearAddress laddr) -> PageTableEntry
  118. {
  119. ASSERT_INTERRUPTS_DISABLED();
  120. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  121. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  122. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory->entries[page_directory_index]);
  123. if (!pde.is_present()) {
  124. #ifdef MM_DEBUG
  125. dbgprintf("MM: PDE %u not present, allocating\n", page_directory_index);
  126. #endif
  127. if (page_directory_index == 0) {
  128. ASSERT(page_directory == m_kernel_page_directory);
  129. pde.setPageTableBase((dword)m_page_table_zero);
  130. pde.set_user_allowed(false);
  131. pde.set_present(true);
  132. pde.set_writable(true);
  133. } else if (page_directory_index == 1) {
  134. ASSERT(page_directory == m_kernel_page_directory);
  135. pde.setPageTableBase((dword)m_page_table_one);
  136. pde.set_user_allowed(false);
  137. pde.set_present(true);
  138. pde.set_writable(true);
  139. } else {
  140. auto page_table = allocate_page_table(*page_directory, page_directory_index);
  141. #ifdef MM_DEBUG
  142. dbgprintf("MM: PD K%x (%s) allocated page table #%u (for L%x) at P%x\n",
  143. page_directory,
  144. page_directory == m_kernel_page_directory ? "Kernel" : "User",
  145. page_directory_index,
  146. laddr.get(),
  147. page_table->paddr().get());
  148. #endif
  149. pde.setPageTableBase(page_table->paddr().get());
  150. pde.set_user_allowed(true);
  151. pde.set_present(true);
  152. pde.set_writable(true);
  153. page_directory->physical_pages[page_directory_index] = move(page_table);
  154. }
  155. }
  156. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  157. }
  158. void MemoryManager::map_protected(LinearAddress linearAddress, size_t length)
  159. {
  160. InterruptDisabler disabler;
  161. // FIXME: ASSERT(linearAddress is 4KB aligned);
  162. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  163. auto pteAddress = linearAddress.offset(offset);
  164. auto pte = ensure_pte(m_kernel_page_directory, pteAddress);
  165. pte.set_physical_page_base(pteAddress.get());
  166. pte.set_user_allowed(false);
  167. pte.set_present(false);
  168. pte.set_writable(false);
  169. flush_tlb(pteAddress);
  170. }
  171. }
  172. void MemoryManager::create_identity_mapping(LinearAddress laddr, size_t size)
  173. {
  174. InterruptDisabler disabler;
  175. // FIXME: ASSERT(laddr is 4KB aligned);
  176. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  177. auto pteAddress = laddr.offset(offset);
  178. auto pte = ensure_pte(m_kernel_page_directory, pteAddress);
  179. pte.set_physical_page_base(pteAddress.get());
  180. pte.set_user_allowed(false);
  181. pte.set_present(true);
  182. pte.set_writable(true);
  183. flush_tlb(pteAddress);
  184. }
  185. }
  186. void MemoryManager::initialize()
  187. {
  188. s_the = new MemoryManager;
  189. }
  190. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  191. {
  192. ASSERT_INTERRUPTS_DISABLED();
  193. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  194. for (auto& region : process.m_regions) {
  195. if (region->contains(laddr))
  196. return region.ptr();
  197. }
  198. kprintf("%s(%u) Couldn't find region for L%x\n", process.name().characters(), process.pid(), laddr.get());
  199. return nullptr;
  200. }
  201. bool MemoryManager::zero_page(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  202. {
  203. ASSERT_INTERRUPTS_DISABLED();
  204. auto& vmo = region.vmo();
  205. auto physical_page = allocate_physical_page();
  206. byte* dest_ptr = quickmap_page(*physical_page);
  207. memset(dest_ptr, 0, PAGE_SIZE);
  208. #ifdef PAGE_FAULT_DEBUG
  209. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  210. #endif
  211. unquickmap_page();
  212. region.cow_map.set(page_index_in_region, false);
  213. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  214. unquickmap_page();
  215. remap_region_page(&page_directory, region, page_index_in_region, true);
  216. return true;
  217. }
  218. bool MemoryManager::copy_on_write(Process& process, Region& region, unsigned page_index_in_region)
  219. {
  220. ASSERT_INTERRUPTS_DISABLED();
  221. auto& vmo = region.vmo();
  222. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  223. #ifdef PAGE_FAULT_DEBUG
  224. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  225. #endif
  226. region.cow_map.set(page_index_in_region, false);
  227. remap_region_page(process.m_page_directory, region, page_index_in_region, true);
  228. return true;
  229. }
  230. #ifdef PAGE_FAULT_DEBUG
  231. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  232. #endif
  233. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  234. auto physical_page = allocate_physical_page();
  235. byte* dest_ptr = quickmap_page(*physical_page);
  236. const byte* src_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  237. #ifdef PAGE_FAULT_DEBUG
  238. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  239. #endif
  240. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  241. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  242. unquickmap_page();
  243. region.cow_map.set(page_index_in_region, false);
  244. remap_region_page(process.m_page_directory, region, page_index_in_region, true);
  245. return true;
  246. }
  247. bool Region::page_in(PageDirectory& page_directory)
  248. {
  249. ASSERT(!vmo().is_anonymous());
  250. ASSERT(vmo().vnode());
  251. #ifdef MM_DEBUG
  252. dbgprintf("MM: page_in %u pages\n", page_count());
  253. #endif
  254. for (size_t i = 0; i < page_count(); ++i) {
  255. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  256. if (vmo_page.is_null()) {
  257. bool success = MM.page_in_from_vnode(page_directory, *this, i);
  258. if (!success)
  259. return false;
  260. }
  261. MM.remap_region_page(&page_directory, *this, i, true);
  262. }
  263. return true;
  264. }
  265. bool MemoryManager::page_in_from_vnode(PageDirectory& page_directory, Region& region, unsigned page_index_in_region)
  266. {
  267. auto& vmo = region.vmo();
  268. ASSERT(!vmo.is_anonymous());
  269. ASSERT(vmo.vnode());
  270. auto& vnode = *vmo.vnode();
  271. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  272. ASSERT(vmo_page.is_null());
  273. vmo_page = allocate_physical_page();
  274. if (vmo_page.is_null()) {
  275. kprintf("MM: page_in_from_vnode was unable to allocate a physical page\n");
  276. return false;
  277. }
  278. remap_region_page(&page_directory, region, page_index_in_region, true);
  279. byte* dest_ptr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE).asPtr();
  280. #ifdef MM_DEBUG
  281. dbgprintf("MM: page_in_from_vnode ready to read from vnode, will write to L%x!\n", dest_ptr);
  282. #endif
  283. sti(); // Oh god here we go...
  284. ASSERT(vnode.core_inode());
  285. auto nread = vnode.core_inode()->read_bytes(vmo.vnode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
  286. if (nread < 0) {
  287. kprintf("MM: page_in_from_vnode had error (%d) while reading!\n", nread);
  288. return false;
  289. }
  290. if (nread < PAGE_SIZE) {
  291. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  292. memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
  293. }
  294. cli();
  295. return true;
  296. }
  297. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  298. {
  299. ASSERT_INTERRUPTS_DISABLED();
  300. #ifdef PAGE_FAULT_DEBUG
  301. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  302. #endif
  303. auto* region = region_from_laddr(*current, fault.laddr());
  304. if (!region) {
  305. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  306. return PageFaultResponse::ShouldCrash;
  307. }
  308. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  309. if (fault.is_not_present()) {
  310. if (region->vmo().vnode()) {
  311. dbgprintf("NP(vnode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  312. page_in_from_vnode(*current->m_page_directory, *region, page_index_in_region);
  313. return PageFaultResponse::Continue;
  314. } else {
  315. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  316. zero_page(*current->m_page_directory, *region, page_index_in_region);
  317. return PageFaultResponse::Continue;
  318. }
  319. } else if (fault.is_protection_violation()) {
  320. if (region->cow_map.get(page_index_in_region)) {
  321. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  322. bool success = copy_on_write(*current, *region, page_index_in_region);
  323. ASSERT(success);
  324. return PageFaultResponse::Continue;
  325. }
  326. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  327. } else {
  328. ASSERT_NOT_REACHED();
  329. }
  330. return PageFaultResponse::ShouldCrash;
  331. }
  332. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page()
  333. {
  334. InterruptDisabler disabler;
  335. if (1 > m_free_physical_pages.size())
  336. return { };
  337. #ifdef MM_DEBUG
  338. dbgprintf("MM: allocate_physical_page vending P%x\n", m_free_physical_pages.last()->paddr().get());
  339. #endif
  340. return m_free_physical_pages.takeLast();
  341. }
  342. void MemoryManager::enter_kernel_paging_scope()
  343. {
  344. InterruptDisabler disabler;
  345. current->m_tss.cr3 = (dword)m_kernel_page_directory;
  346. asm volatile("movl %%eax, %%cr3"::"a"(m_kernel_page_directory):"memory");
  347. }
  348. void MemoryManager::enter_process_paging_scope(Process& process)
  349. {
  350. InterruptDisabler disabler;
  351. current->m_tss.cr3 = (dword)process.m_page_directory;
  352. asm volatile("movl %%eax, %%cr3"::"a"(process.m_page_directory):"memory");
  353. }
  354. void MemoryManager::flush_entire_tlb()
  355. {
  356. asm volatile(
  357. "mov %cr3, %eax\n"
  358. "mov %eax, %cr3\n"
  359. );
  360. }
  361. void MemoryManager::flush_tlb(LinearAddress laddr)
  362. {
  363. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  364. }
  365. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  366. {
  367. ASSERT_INTERRUPTS_DISABLED();
  368. auto page_laddr = LinearAddress(4 * MB);
  369. auto pte = ensure_pte(m_kernel_page_directory, page_laddr);
  370. pte.set_physical_page_base(physical_page.paddr().get());
  371. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  372. pte.set_writable(true);
  373. pte.set_user_allowed(false);
  374. flush_tlb(page_laddr);
  375. #ifdef MM_DEBUG
  376. dbgprintf("MM: >> quickmap_page L%x => P%x\n", page_laddr, physical_page.paddr().get());
  377. #endif
  378. return page_laddr.asPtr();
  379. }
  380. void MemoryManager::unquickmap_page()
  381. {
  382. ASSERT_INTERRUPTS_DISABLED();
  383. auto page_laddr = LinearAddress(4 * MB);
  384. auto pte = ensure_pte(m_kernel_page_directory, page_laddr);
  385. #ifdef MM_DEBUG
  386. auto old_physical_address = pte.physical_page_base();
  387. #endif
  388. pte.set_physical_page_base(0);
  389. pte.set_present(false);
  390. pte.set_writable(false);
  391. pte.set_user_allowed(false);
  392. flush_tlb(page_laddr);
  393. #ifdef MM_DEBUG
  394. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  395. #endif
  396. }
  397. void MemoryManager::remap_region_page(PageDirectory* page_directory, Region& region, unsigned page_index_in_region, bool user_allowed)
  398. {
  399. InterruptDisabler disabler;
  400. auto page_laddr = region.linearAddress.offset(page_index_in_region * PAGE_SIZE);
  401. auto pte = ensure_pte(page_directory, page_laddr);
  402. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  403. ASSERT(physical_page);
  404. pte.set_physical_page_base(physical_page->paddr().get());
  405. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  406. if (region.cow_map.get(page_index_in_region))
  407. pte.set_writable(false);
  408. else
  409. pte.set_writable(region.is_writable);
  410. pte.set_user_allowed(user_allowed);
  411. if (page_directory->is_active())
  412. flush_tlb(page_laddr);
  413. #ifdef MM_DEBUG
  414. dbgprintf("MM: >> remap_region_page (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  415. #endif
  416. }
  417. void MemoryManager::remap_region(Process& process, Region& region)
  418. {
  419. InterruptDisabler disabler;
  420. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  421. }
  422. void MemoryManager::map_region_at_address(PageDirectory* page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  423. {
  424. InterruptDisabler disabler;
  425. auto& vmo = region.vmo();
  426. #ifdef MM_DEBUG
  427. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  428. #endif
  429. for (size_t i = 0; i < region.page_count(); ++i) {
  430. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  431. auto pte = ensure_pte(page_directory, page_laddr);
  432. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  433. if (physical_page) {
  434. pte.set_physical_page_base(physical_page->paddr().get());
  435. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  436. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  437. if (region.cow_map.get(region.first_page_index() + i))
  438. pte.set_writable(false);
  439. else
  440. pte.set_writable(region.is_writable);
  441. } else {
  442. pte.set_physical_page_base(0);
  443. pte.set_present(false);
  444. pte.set_writable(region.is_writable);
  445. }
  446. pte.set_user_allowed(user_allowed);
  447. if (page_directory->is_active())
  448. flush_tlb(page_laddr);
  449. #ifdef MM_DEBUG
  450. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", page_directory, region.name.characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  451. #endif
  452. }
  453. }
  454. void MemoryManager::unmap_range(PageDirectory* page_directory, LinearAddress laddr, size_t size)
  455. {
  456. ASSERT((size % PAGE_SIZE) == 0);
  457. InterruptDisabler disabler;
  458. size_t numPages = size / PAGE_SIZE;
  459. for (size_t i = 0; i < numPages; ++i) {
  460. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  461. auto pte = ensure_pte(page_directory, page_laddr);
  462. pte.set_physical_page_base(0);
  463. pte.set_present(false);
  464. pte.set_writable(false);
  465. pte.set_user_allowed(false);
  466. if (page_directory->is_active())
  467. flush_tlb(page_laddr);
  468. #ifdef MM_DEBUG
  469. dbgprintf("MM: << unmap_range L%x =/> 0\n", page_laddr);
  470. #endif
  471. }
  472. }
  473. LinearAddress MemoryManager::allocate_linear_address_range(size_t size)
  474. {
  475. ASSERT((size % PAGE_SIZE) == 0);
  476. // FIXME: Recycle ranges!
  477. auto laddr = m_next_laddr;
  478. m_next_laddr.set(m_next_laddr.get() + size);
  479. return laddr;
  480. }
  481. byte* MemoryManager::create_kernel_alias_for_region(Region& region)
  482. {
  483. InterruptDisabler disabler;
  484. #ifdef MM_DEBUG
  485. dbgprintf("MM: create_kernel_alias_for_region region=%p (L%x size=%u)\n", &region, region.linearAddress.get(), region.size);
  486. #endif
  487. auto laddr = allocate_linear_address_range(region.size);
  488. map_region_at_address(m_kernel_page_directory, region, laddr, false);
  489. #ifdef MM_DEBUG
  490. dbgprintf("MM: Created alias L%x for L%x\n", laddr.get(), region.linearAddress.get());
  491. #endif
  492. return laddr.asPtr();
  493. }
  494. void MemoryManager::remove_kernel_alias_for_region(Region& region, byte* addr)
  495. {
  496. #ifdef MM_DEBUG
  497. dbgprintf("remove_kernel_alias_for_region region=%p, addr=L%x\n", &region, addr);
  498. #endif
  499. unmap_range(m_kernel_page_directory, LinearAddress((dword)addr), region.size);
  500. }
  501. bool MemoryManager::unmap_region(Process& process, Region& region)
  502. {
  503. InterruptDisabler disabler;
  504. for (size_t i = 0; i < region.page_count(); ++i) {
  505. auto laddr = region.linearAddress.offset(i * PAGE_SIZE);
  506. auto pte = ensure_pte(process.m_page_directory, laddr);
  507. pte.set_physical_page_base(0);
  508. pte.set_present(false);
  509. pte.set_writable(false);
  510. pte.set_user_allowed(false);
  511. if (process.m_page_directory->is_active())
  512. flush_tlb(laddr);
  513. #ifdef MM_DEBUG
  514. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  515. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  516. #endif
  517. }
  518. return true;
  519. }
  520. bool MemoryManager::map_region(Process& process, Region& region)
  521. {
  522. map_region_at_address(process.m_page_directory, region, region.linearAddress, true);
  523. return true;
  524. }
  525. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  526. {
  527. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  528. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  529. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  530. if (!pde.is_present())
  531. return false;
  532. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  533. if (!pte.is_present())
  534. return false;
  535. if (!pte.is_user_allowed())
  536. return false;
  537. return true;
  538. }
  539. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  540. {
  541. dword pageDirectoryIndex = (laddr.get() >> 22) & 0x3ff;
  542. dword pageTableIndex = (laddr.get() >> 12) & 0x3ff;
  543. auto pde = PageDirectoryEntry(&process.m_page_directory->entries[pageDirectoryIndex]);
  544. if (!pde.is_present())
  545. return false;
  546. auto pte = PageTableEntry(&pde.pageTableBase()[pageTableIndex]);
  547. if (!pte.is_present())
  548. return false;
  549. if (!pte.is_user_allowed())
  550. return false;
  551. if (!pte.is_writable())
  552. return false;
  553. return true;
  554. }
  555. RetainPtr<Region> Region::clone()
  556. {
  557. InterruptDisabler disabler;
  558. if (is_readable && !is_writable) {
  559. // Create a new region backed by the same VMObject.
  560. return adopt(*new Region(linearAddress, size, m_vmo.copyRef(), m_offset_in_vmo, String(name), is_readable, is_writable));
  561. }
  562. // Set up a COW region. The parent (this) region becomes COW as well!
  563. for (size_t i = 0; i < page_count(); ++i)
  564. cow_map.set(i, true);
  565. MM.remap_region(*current, *this);
  566. return adopt(*new Region(linearAddress, size, m_vmo->clone(), m_offset_in_vmo, String(name), is_readable, is_writable, true));
  567. }
  568. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  569. : linearAddress(a)
  570. , size(s)
  571. , m_vmo(VMObject::create_anonymous(s))
  572. , name(move(n))
  573. , is_readable(r)
  574. , is_writable(w)
  575. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  576. {
  577. m_vmo->set_name(name);
  578. MM.register_region(*this);
  579. }
  580. Region::Region(LinearAddress a, size_t s, RetainPtr<Vnode>&& vnode, String&& n, bool r, bool w)
  581. : linearAddress(a)
  582. , size(s)
  583. , m_vmo(VMObject::create_file_backed(move(vnode), s))
  584. , name(move(n))
  585. , is_readable(r)
  586. , is_writable(w)
  587. , cow_map(Bitmap::create(m_vmo->page_count()))
  588. {
  589. MM.register_region(*this);
  590. }
  591. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  592. : linearAddress(a)
  593. , size(s)
  594. , m_offset_in_vmo(offset_in_vmo)
  595. , m_vmo(move(vmo))
  596. , name(move(n))
  597. , is_readable(r)
  598. , is_writable(w)
  599. , cow_map(Bitmap::create(m_vmo->page_count(), cow))
  600. {
  601. MM.register_region(*this);
  602. }
  603. Region::~Region()
  604. {
  605. MM.unregister_region(*this);
  606. }
  607. void PhysicalPage::return_to_freelist()
  608. {
  609. InterruptDisabler disabler;
  610. m_retain_count = 1;
  611. MM.m_free_physical_pages.append(adopt(*this));
  612. #ifdef MM_DEBUG
  613. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  614. #endif
  615. }
  616. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Vnode>&& vnode, size_t size)
  617. {
  618. InterruptDisabler disabler;
  619. if (vnode->vmo())
  620. return static_cast<VMObject*>(vnode->vmo());
  621. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  622. auto vmo = adopt(*new VMObject(move(vnode), size));
  623. vmo->vnode()->set_vmo(vmo.ptr());
  624. return vmo;
  625. }
  626. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  627. {
  628. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  629. return adopt(*new VMObject(size));
  630. }
  631. RetainPtr<VMObject> VMObject::clone()
  632. {
  633. return adopt(*new VMObject(*this));
  634. }
  635. VMObject::VMObject(VMObject& other)
  636. : m_name(other.m_name)
  637. , m_anonymous(other.m_anonymous)
  638. , m_vnode_offset(other.m_vnode_offset)
  639. , m_size(other.m_size)
  640. , m_vnode(other.m_vnode)
  641. , m_physical_pages(other.m_physical_pages)
  642. {
  643. MM.register_vmo(*this);
  644. }
  645. VMObject::VMObject(size_t size)
  646. : m_anonymous(true)
  647. , m_size(size)
  648. {
  649. MM.register_vmo(*this);
  650. m_physical_pages.resize(page_count());
  651. }
  652. VMObject::VMObject(RetainPtr<Vnode>&& vnode, size_t size)
  653. : m_size(size)
  654. , m_vnode(move(vnode))
  655. {
  656. m_physical_pages.resize(page_count());
  657. MM.register_vmo(*this);
  658. }
  659. VMObject::~VMObject()
  660. {
  661. if (m_vnode) {
  662. ASSERT(m_vnode->vmo() == this);
  663. m_vnode->set_vmo(nullptr);
  664. }
  665. MM.unregister_vmo(*this);
  666. }
  667. int Region::commit(Process& process)
  668. {
  669. InterruptDisabler disabler;
  670. #ifdef MM_DEBUG
  671. dbgprintf("MM: commit %u pages in at L%x\n", vmo().page_count(), linearAddress.get());
  672. #endif
  673. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  674. if (!vmo().physical_pages()[i].is_null())
  675. continue;
  676. auto physical_page = MM.allocate_physical_page();
  677. if (!physical_page) {
  678. kprintf("MM: commit was unable to allocate a physical page\n");
  679. return -ENOMEM;
  680. }
  681. vmo().physical_pages()[i] = move(physical_page);
  682. MM.remap_region_page(process.m_page_directory, *this, i, true);
  683. }
  684. return 0;
  685. }
  686. void MemoryManager::register_vmo(VMObject& vmo)
  687. {
  688. InterruptDisabler disabler;
  689. m_vmos.set(&vmo);
  690. }
  691. void MemoryManager::unregister_vmo(VMObject& vmo)
  692. {
  693. InterruptDisabler disabler;
  694. m_vmos.remove(&vmo);
  695. }
  696. void MemoryManager::register_region(Region& region)
  697. {
  698. InterruptDisabler disabler;
  699. m_regions.set(&region);
  700. }
  701. void MemoryManager::unregister_region(Region& region)
  702. {
  703. InterruptDisabler disabler;
  704. m_regions.remove(&region);
  705. }
  706. inline bool PageDirectory::is_active() const
  707. {
  708. return &current->page_directory() == this;
  709. }
  710. size_t Region::committed() const
  711. {
  712. size_t bytes = 0;
  713. for (size_t i = 0; i < page_count(); ++i) {
  714. if (m_vmo->physical_pages()[first_page_index() + i])
  715. bytes += PAGE_SIZE;
  716. }
  717. return bytes;
  718. }