MemoryManager.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright notice, this
  9. * list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright notice,
  12. * this list of conditions and the following disclaimer in the documentation
  13. * and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  16. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  17. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  18. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  19. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  20. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  21. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  22. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  23. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <AK/Assertions.h>
  27. #include <AK/Memory.h>
  28. #include <AK/StringView.h>
  29. #include <Kernel/Arch/i386/CPU.h>
  30. #include <Kernel/CMOS.h>
  31. #include <Kernel/FileSystem/Inode.h>
  32. #include <Kernel/Multiboot.h>
  33. #include <Kernel/Process.h>
  34. #include <Kernel/VM/AnonymousVMObject.h>
  35. #include <Kernel/VM/ContiguousVMObject.h>
  36. #include <Kernel/VM/MemoryManager.h>
  37. #include <Kernel/VM/PageDirectory.h>
  38. #include <Kernel/VM/PhysicalRegion.h>
  39. #include <Kernel/VM/PurgeableVMObject.h>
  40. #include <Kernel/VM/SharedInodeVMObject.h>
  41. #include <Kernel/StdLib.h>
  42. //#define MM_DEBUG
  43. //#define PAGE_FAULT_DEBUG
  44. extern FlatPtr start_of_kernel_text;
  45. extern FlatPtr start_of_kernel_data;
  46. extern FlatPtr end_of_kernel_bss;
  47. namespace Kernel {
  48. // NOTE: We can NOT use AK::Singleton for this class, because
  49. // MemoryManager::initialize is called *before* global constructors are
  50. // run. If we do, then AK::Singleton would get re-initialized, causing
  51. // the memory manager to be initialized twice!
  52. static MemoryManager* s_the;
  53. RecursiveSpinLock s_mm_lock;
  54. MemoryManager& MM
  55. {
  56. return *s_the;
  57. }
  58. MemoryManager::MemoryManager()
  59. {
  60. ScopedSpinLock lock(s_mm_lock);
  61. m_kernel_page_directory = PageDirectory::create_kernel_page_directory();
  62. parse_memory_map();
  63. write_cr3(kernel_page_directory().cr3());
  64. protect_kernel_image();
  65. m_shared_zero_page = allocate_user_physical_page();
  66. }
  67. MemoryManager::~MemoryManager()
  68. {
  69. }
  70. void MemoryManager::protect_kernel_image()
  71. {
  72. // Disable writing to the kernel text and rodata segments.
  73. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) {
  74. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  75. pte.set_writable(false);
  76. }
  77. if (Processor::current().has_feature(CPUFeature::NX)) {
  78. // Disable execution of the kernel data and bss segments.
  79. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
  80. auto& pte = ensure_pte(kernel_page_directory(), VirtualAddress(i));
  81. pte.set_execute_disabled(true);
  82. }
  83. }
  84. }
  85. void MemoryManager::parse_memory_map()
  86. {
  87. RefPtr<PhysicalRegion> region;
  88. bool region_is_super = false;
  89. auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
  90. for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  91. klog() << "MM: Multiboot mmap: base_addr = " << String::format("0x%08x", mmap->addr) << ", length = " << String::format("0x%08x", mmap->len) << ", type = 0x" << String::format("%x", mmap->type);
  92. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  93. continue;
  94. // FIXME: Maybe make use of stuff below the 1MiB mark?
  95. if (mmap->addr < (1 * MiB))
  96. continue;
  97. if ((mmap->addr + mmap->len) > 0xffffffff)
  98. continue;
  99. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE;
  100. if (diff != 0) {
  101. klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", mmap->addr) << " by " << diff << " bytes";
  102. diff = PAGE_SIZE - diff;
  103. mmap->addr += diff;
  104. mmap->len -= diff;
  105. }
  106. if ((mmap->len % PAGE_SIZE) != 0) {
  107. klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes";
  108. mmap->len -= mmap->len % PAGE_SIZE;
  109. }
  110. if (mmap->len < PAGE_SIZE) {
  111. klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes";
  112. continue;
  113. }
  114. #ifdef MM_DEBUG
  115. klog() << "MM: considering memory at " << String::format("%p", (FlatPtr)mmap->addr) << " - " << String::format("%p", (FlatPtr)(mmap->addr + mmap->len));
  116. #endif
  117. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  118. auto addr = PhysicalAddress(page_base);
  119. if (page_base < 7 * MiB) {
  120. // nothing
  121. } else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
  122. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  123. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  124. region = m_super_physical_regions.last();
  125. region_is_super = true;
  126. } else {
  127. region->expand(region->lower(), addr);
  128. }
  129. } else {
  130. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  131. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  132. region = m_user_physical_regions.last();
  133. region_is_super = false;
  134. } else {
  135. region->expand(region->lower(), addr);
  136. }
  137. }
  138. }
  139. }
  140. for (auto& region : m_super_physical_regions)
  141. m_super_physical_pages += region.finalize_capacity();
  142. for (auto& region : m_user_physical_regions)
  143. m_user_physical_pages += region.finalize_capacity();
  144. ASSERT(m_super_physical_pages > 0);
  145. ASSERT(m_user_physical_pages > 0);
  146. }
  147. const PageTableEntry* MemoryManager::pte(const PageDirectory& page_directory, VirtualAddress vaddr)
  148. {
  149. ASSERT_INTERRUPTS_DISABLED();
  150. ASSERT(s_mm_lock.own_lock());
  151. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  152. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  153. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  154. auto* pd = quickmap_pd(const_cast<PageDirectory&>(page_directory), page_directory_table_index);
  155. const PageDirectoryEntry& pde = pd[page_directory_index];
  156. if (!pde.is_present())
  157. return nullptr;
  158. return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  159. }
  160. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  161. {
  162. ASSERT_INTERRUPTS_DISABLED();
  163. ASSERT(s_mm_lock.own_lock());
  164. u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3;
  165. u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff;
  166. u32 page_table_index = (vaddr.get() >> 12) & 0x1ff;
  167. auto* pd = quickmap_pd(page_directory, page_directory_table_index);
  168. PageDirectoryEntry& pde = pd[page_directory_index];
  169. if (!pde.is_present()) {
  170. #ifdef MM_DEBUG
  171. dbg() << "MM: PDE " << page_directory_index << " not present (requested for " << vaddr << "), allocating";
  172. #endif
  173. auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes);
  174. #ifdef MM_DEBUG
  175. dbg() << "MM: PD K" << &page_directory << " (" << (&page_directory == m_kernel_page_directory ? "Kernel" : "User") << ") at " << PhysicalAddress(page_directory.cr3()) << " allocated page table #" << page_directory_index << " (for " << vaddr << ") at " << page_table->paddr();
  176. #endif
  177. pde.set_page_table_base(page_table->paddr().get());
  178. pde.set_user_allowed(true);
  179. pde.set_present(true);
  180. pde.set_writable(true);
  181. pde.set_global(&page_directory == m_kernel_page_directory.ptr());
  182. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  183. }
  184. return quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index];
  185. }
  186. void MemoryManager::initialize(u32 cpu)
  187. {
  188. auto mm_data = new MemoryManagerData;
  189. #ifdef MM_DEBUG
  190. dbg() << "MM: Processor #" << cpu << " specific data at " << VirtualAddress(mm_data);
  191. #endif
  192. Processor::current().set_mm_data(*mm_data);
  193. if (cpu == 0)
  194. s_the = new MemoryManager;
  195. }
  196. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  197. {
  198. ScopedSpinLock lock(s_mm_lock);
  199. for (auto& region : MM.m_kernel_regions) {
  200. if (region.contains(vaddr))
  201. return &region;
  202. }
  203. return nullptr;
  204. }
  205. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  206. {
  207. ScopedSpinLock lock(s_mm_lock);
  208. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  209. for (auto& region : process.m_regions) {
  210. if (region.contains(vaddr))
  211. return &region;
  212. }
  213. #ifdef MM_DEBUG
  214. dbg() << process << " Couldn't find user region for " << vaddr;
  215. #endif
  216. return nullptr;
  217. }
  218. Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr)
  219. {
  220. ScopedSpinLock lock(s_mm_lock);
  221. if (auto* region = user_region_from_vaddr(process, vaddr))
  222. return region;
  223. return kernel_region_from_vaddr(vaddr);
  224. }
  225. const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr)
  226. {
  227. ScopedSpinLock lock(s_mm_lock);
  228. if (auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr))
  229. return region;
  230. return kernel_region_from_vaddr(vaddr);
  231. }
  232. Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr)
  233. {
  234. ScopedSpinLock lock(s_mm_lock);
  235. if (auto* region = kernel_region_from_vaddr(vaddr))
  236. return region;
  237. auto page_directory = PageDirectory::find_by_cr3(read_cr3());
  238. if (!page_directory)
  239. return nullptr;
  240. ASSERT(page_directory->process());
  241. return user_region_from_vaddr(*page_directory->process(), vaddr);
  242. }
  243. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  244. {
  245. ASSERT_INTERRUPTS_DISABLED();
  246. ASSERT(Thread::current() != nullptr);
  247. ScopedSpinLock lock(s_mm_lock);
  248. if (Processor::current().in_irq()) {
  249. dbg() << "CPU[" << Processor::current().id() << "] BUG! Page fault while handling IRQ! code=" << fault.code() << ", vaddr=" << fault.vaddr() << ", irq level: " << Processor::current().in_irq();
  250. dump_kernel_regions();
  251. return PageFaultResponse::ShouldCrash;
  252. }
  253. #ifdef PAGE_FAULT_DEBUG
  254. dbg() << "MM: CPU[" << Processor::current().id() << "] handle_page_fault(" << String::format("%w", fault.code()) << ") at " << fault.vaddr();
  255. #endif
  256. auto* region = find_region_from_vaddr(fault.vaddr());
  257. if (!region) {
  258. klog() << "CPU[" << Processor::current().id() << "] NP(error) fault at invalid address " << fault.vaddr();
  259. return PageFaultResponse::ShouldCrash;
  260. }
  261. return region->handle_fault(fault);
  262. }
  263. OwnPtr<Region> MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  264. {
  265. ASSERT(!(size % PAGE_SIZE));
  266. ScopedSpinLock lock(s_mm_lock);
  267. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  268. if (!range.is_valid())
  269. return nullptr;
  270. auto vmobject = ContiguousVMObject::create_with_size(size);
  271. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  272. if (!region)
  273. return nullptr;
  274. return region;
  275. }
  276. OwnPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool should_commit, bool cacheable)
  277. {
  278. ASSERT(!(size % PAGE_SIZE));
  279. ScopedSpinLock lock(s_mm_lock);
  280. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  281. if (!range.is_valid())
  282. return nullptr;
  283. auto vmobject = AnonymousVMObject::create_with_size(size);
  284. auto region = allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  285. if (!region)
  286. return nullptr;
  287. if (should_commit && !region->commit())
  288. return nullptr;
  289. return region;
  290. }
  291. OwnPtr<Region> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  292. {
  293. ASSERT(!(size % PAGE_SIZE));
  294. ScopedSpinLock lock(s_mm_lock);
  295. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  296. if (!range.is_valid())
  297. return nullptr;
  298. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  299. if (!vmobject)
  300. return nullptr;
  301. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  302. }
  303. OwnPtr<Region> MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  304. {
  305. ASSERT(!(size % PAGE_SIZE));
  306. ScopedSpinLock lock(s_mm_lock);
  307. auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size);
  308. if (!range.is_valid())
  309. return nullptr;
  310. auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size);
  311. if (!vmobject)
  312. return nullptr;
  313. return allocate_kernel_region_with_vmobject(range, *vmobject, name, access, user_accessible, cacheable);
  314. }
  315. OwnPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable)
  316. {
  317. return allocate_kernel_region(size, name, access, true, true, cacheable);
  318. }
  319. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  320. {
  321. ScopedSpinLock lock(s_mm_lock);
  322. OwnPtr<Region> region;
  323. if (user_accessible)
  324. region = Region::create_user_accessible(range, vmobject, 0, name, access, cacheable);
  325. else
  326. region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable);
  327. if (region)
  328. region->map(kernel_page_directory());
  329. return region;
  330. }
  331. OwnPtr<Region> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable)
  332. {
  333. ASSERT(!(size % PAGE_SIZE));
  334. ScopedSpinLock lock(s_mm_lock);
  335. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  336. if (!range.is_valid())
  337. return nullptr;
  338. return allocate_kernel_region_with_vmobject(range, vmobject, name, access, user_accessible, cacheable);
  339. }
  340. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  341. {
  342. ScopedSpinLock lock(s_mm_lock);
  343. for (auto& region : m_user_physical_regions) {
  344. if (!region.contains(page)) {
  345. klog() << "MM: deallocate_user_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  346. continue;
  347. }
  348. region.return_page(move(page));
  349. --m_user_physical_pages_used;
  350. return;
  351. }
  352. klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr();
  353. ASSERT_NOT_REACHED();
  354. }
  355. RefPtr<PhysicalPage> MemoryManager::find_free_user_physical_page()
  356. {
  357. ASSERT(s_mm_lock.is_locked());
  358. RefPtr<PhysicalPage> page;
  359. for (auto& region : m_user_physical_regions) {
  360. page = region.take_free_page(false);
  361. if (!page.is_null())
  362. break;
  363. }
  364. return page;
  365. }
  366. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  367. {
  368. ScopedSpinLock lock(s_mm_lock);
  369. auto page = find_free_user_physical_page();
  370. if (!page) {
  371. // We didn't have a single free physical page. Let's try to free something up!
  372. // First, we look for a purgeable VMObject in the volatile state.
  373. for_each_vmobject_of_type<PurgeableVMObject>([&](auto& vmobject) {
  374. int purged_page_count = vmobject.purge_with_interrupts_disabled({});
  375. if (purged_page_count) {
  376. klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from PurgeableVMObject{" << &vmobject << "}";
  377. page = find_free_user_physical_page();
  378. ASSERT(page);
  379. return IterationDecision::Break;
  380. }
  381. return IterationDecision::Continue;
  382. });
  383. if (!page) {
  384. klog() << "MM: no user physical pages available";
  385. return {};
  386. }
  387. }
  388. #ifdef MM_DEBUG
  389. dbg() << "MM: allocate_user_physical_page vending " << page->paddr();
  390. #endif
  391. if (should_zero_fill == ShouldZeroFill::Yes) {
  392. auto* ptr = quickmap_page(*page);
  393. memset(ptr, 0, PAGE_SIZE);
  394. unquickmap_page();
  395. }
  396. ++m_user_physical_pages_used;
  397. return page;
  398. }
  399. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  400. {
  401. ScopedSpinLock lock(s_mm_lock);
  402. for (auto& region : m_super_physical_regions) {
  403. if (!region.contains(page)) {
  404. klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper();
  405. continue;
  406. }
  407. region.return_page(move(page));
  408. --m_super_physical_pages_used;
  409. return;
  410. }
  411. klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr();
  412. ASSERT_NOT_REACHED();
  413. }
  414. NonnullRefPtrVector<PhysicalPage> MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size)
  415. {
  416. ASSERT(!(size % PAGE_SIZE));
  417. ScopedSpinLock lock(s_mm_lock);
  418. size_t count = ceil_div(size, PAGE_SIZE);
  419. NonnullRefPtrVector<PhysicalPage> physical_pages;
  420. for (auto& region : m_super_physical_regions) {
  421. physical_pages = region.take_contiguous_free_pages((count), true);
  422. if (physical_pages.is_empty())
  423. continue;
  424. }
  425. if (physical_pages.is_empty()) {
  426. if (m_super_physical_regions.is_empty()) {
  427. klog() << "MM: no super physical regions available (?)";
  428. }
  429. klog() << "MM: no super physical pages available";
  430. ASSERT_NOT_REACHED();
  431. return {};
  432. }
  433. auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write);
  434. fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32));
  435. m_super_physical_pages_used += count;
  436. return physical_pages;
  437. }
  438. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  439. {
  440. ScopedSpinLock lock(s_mm_lock);
  441. RefPtr<PhysicalPage> page;
  442. for (auto& region : m_super_physical_regions) {
  443. page = region.take_free_page(true);
  444. if (page.is_null())
  445. continue;
  446. }
  447. if (!page) {
  448. if (m_super_physical_regions.is_empty()) {
  449. klog() << "MM: no super physical regions available (?)";
  450. }
  451. klog() << "MM: no super physical pages available";
  452. ASSERT_NOT_REACHED();
  453. return {};
  454. }
  455. #ifdef MM_DEBUG
  456. dbg() << "MM: allocate_supervisor_physical_page vending " << page->paddr();
  457. #endif
  458. fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  459. ++m_super_physical_pages_used;
  460. return page;
  461. }
  462. void MemoryManager::enter_process_paging_scope(Process& process)
  463. {
  464. auto current_thread = Thread::current();
  465. ASSERT(current_thread != nullptr);
  466. ScopedSpinLock lock(s_mm_lock);
  467. current_thread->tss().cr3 = process.page_directory().cr3();
  468. write_cr3(process.page_directory().cr3());
  469. }
  470. void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
  471. {
  472. #ifdef MM_DEBUG
  473. dbg() << "MM: Flush " << page_count << " pages at " << vaddr << " on CPU#" << Processor::current().id();
  474. #endif
  475. Processor::flush_tlb_local(vaddr, page_count);
  476. }
  477. void MemoryManager::flush_tlb(VirtualAddress vaddr, size_t page_count)
  478. {
  479. #ifdef MM_DEBUG
  480. dbg() << "MM: Flush " << page_count << " pages at " << vaddr;
  481. #endif
  482. Processor::flush_tlb(vaddr, page_count);
  483. }
  484. extern "C" PageTableEntry boot_pd3_pt1023[1024];
  485. PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index)
  486. {
  487. ASSERT(s_mm_lock.own_lock());
  488. auto& pte = boot_pd3_pt1023[4];
  489. auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr();
  490. if (pte.physical_page_base() != pd_paddr.as_ptr()) {
  491. #ifdef MM_DEBUG
  492. dbg() << "quickmap_pd: Mapping P" << (void*)directory.m_directory_pages[pdpt_index]->paddr().as_ptr() << " at 0xffe04000 in pte @ " << &pte;
  493. #endif
  494. pte.set_physical_page_base(pd_paddr.get());
  495. pte.set_present(true);
  496. pte.set_writable(true);
  497. pte.set_user_allowed(false);
  498. // Because we must continue to hold the MM lock while we use this
  499. // mapping, it is sufficient to only flush on the current CPU. Other
  500. // CPUs trying to use this API must wait on the MM lock anyway
  501. flush_tlb_local(VirtualAddress(0xffe04000));
  502. }
  503. return (PageDirectoryEntry*)0xffe04000;
  504. }
  505. PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr)
  506. {
  507. ASSERT(s_mm_lock.own_lock());
  508. auto& pte = boot_pd3_pt1023[0];
  509. if (pte.physical_page_base() != pt_paddr.as_ptr()) {
  510. #ifdef MM_DEBUG
  511. dbg() << "quickmap_pt: Mapping P" << (void*)pt_paddr.as_ptr() << " at 0xffe00000 in pte @ " << &pte;
  512. #endif
  513. pte.set_physical_page_base(pt_paddr.get());
  514. pte.set_present(true);
  515. pte.set_writable(true);
  516. pte.set_user_allowed(false);
  517. // Because we must continue to hold the MM lock while we use this
  518. // mapping, it is sufficient to only flush on the current CPU. Other
  519. // CPUs trying to use this API must wait on the MM lock anyway
  520. flush_tlb_local(VirtualAddress(0xffe00000));
  521. }
  522. return (PageTableEntry*)0xffe00000;
  523. }
  524. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  525. {
  526. ASSERT_INTERRUPTS_DISABLED();
  527. auto& mm_data = get_data();
  528. mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock();
  529. ScopedSpinLock lock(s_mm_lock);
  530. u32 pte_idx = 8 + Processor::current().id();
  531. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  532. auto& pte = boot_pd3_pt1023[pte_idx];
  533. if (pte.physical_page_base() != physical_page.paddr().as_ptr()) {
  534. #ifdef MM_DEBUG
  535. dbg() << "quickmap_page: Mapping P" << (void*)physical_page.paddr().as_ptr() << " at 0xffe08000 in pte @ " << &pte;
  536. #endif
  537. pte.set_physical_page_base(physical_page.paddr().get());
  538. pte.set_present(true);
  539. pte.set_writable(true);
  540. pte.set_user_allowed(false);
  541. flush_tlb_local(vaddr);
  542. }
  543. return vaddr.as_ptr();
  544. }
  545. void MemoryManager::unquickmap_page()
  546. {
  547. ASSERT_INTERRUPTS_DISABLED();
  548. ScopedSpinLock lock(s_mm_lock);
  549. auto& mm_data = get_data();
  550. ASSERT(mm_data.m_quickmap_in_use.is_locked());
  551. u32 pte_idx = 8 + Processor::current().id();
  552. VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE);
  553. auto& pte = boot_pd3_pt1023[pte_idx];
  554. pte.clear();
  555. flush_tlb_local(vaddr);
  556. mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags);
  557. }
  558. template<MemoryManager::AccessSpace space, MemoryManager::AccessType access_type>
  559. bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const
  560. {
  561. ASSERT(s_mm_lock.is_locked());
  562. ASSERT(size);
  563. if (base_vaddr > base_vaddr.offset(size)) {
  564. dbg() << "Shenanigans! Asked to validate wrappy " << base_vaddr << " size=" << size;
  565. return false;
  566. }
  567. VirtualAddress vaddr = base_vaddr.page_base();
  568. VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base();
  569. if (end_vaddr < vaddr) {
  570. dbg() << "Shenanigans! Asked to validate " << base_vaddr << " size=" << size;
  571. return false;
  572. }
  573. const Region* region = nullptr;
  574. while (vaddr <= end_vaddr) {
  575. if (!region || !region->contains(vaddr)) {
  576. if (space == AccessSpace::Kernel)
  577. region = kernel_region_from_vaddr(vaddr);
  578. if (!region || !region->contains(vaddr))
  579. region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  580. if (!region
  581. || (space == AccessSpace::User && !region->is_user_accessible())
  582. || (access_type == AccessType::Read && !region->is_readable())
  583. || (access_type == AccessType::Write && !region->is_writable())) {
  584. return false;
  585. }
  586. }
  587. vaddr = region->range().end();
  588. }
  589. return true;
  590. }
  591. bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const
  592. {
  593. if (!is_user_address(vaddr))
  594. return false;
  595. ScopedSpinLock lock(s_mm_lock);
  596. auto* region = user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  597. return region && region->is_user_accessible() && region->is_stack();
  598. }
  599. bool MemoryManager::validate_kernel_read(const Process& process, VirtualAddress vaddr, size_t size) const
  600. {
  601. ScopedSpinLock lock(s_mm_lock);
  602. return validate_range<AccessSpace::Kernel, AccessType::Read>(process, vaddr, size);
  603. }
  604. bool MemoryManager::can_read_without_faulting(const Process& process, VirtualAddress vaddr, size_t size) const
  605. {
  606. // FIXME: Use the size argument!
  607. UNUSED_PARAM(size);
  608. ScopedSpinLock lock(s_mm_lock);
  609. auto* pte = const_cast<MemoryManager*>(this)->pte(process.page_directory(), vaddr);
  610. if (!pte)
  611. return false;
  612. return pte->is_present();
  613. }
  614. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr, size_t size) const
  615. {
  616. if (!is_user_address(vaddr))
  617. return false;
  618. ScopedSpinLock lock(s_mm_lock);
  619. return validate_range<AccessSpace::User, AccessType::Read>(process, vaddr, size);
  620. }
  621. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr, size_t size) const
  622. {
  623. if (!is_user_address(vaddr))
  624. return false;
  625. ScopedSpinLock lock(s_mm_lock);
  626. return validate_range<AccessSpace::User, AccessType::Write>(process, vaddr, size);
  627. }
  628. void MemoryManager::register_vmobject(VMObject& vmobject)
  629. {
  630. ScopedSpinLock lock(s_mm_lock);
  631. m_vmobjects.append(&vmobject);
  632. }
  633. void MemoryManager::unregister_vmobject(VMObject& vmobject)
  634. {
  635. ScopedSpinLock lock(s_mm_lock);
  636. m_vmobjects.remove(&vmobject);
  637. }
  638. void MemoryManager::register_region(Region& region)
  639. {
  640. ScopedSpinLock lock(s_mm_lock);
  641. if (region.is_kernel())
  642. m_kernel_regions.append(&region);
  643. else
  644. m_user_regions.append(&region);
  645. }
  646. void MemoryManager::unregister_region(Region& region)
  647. {
  648. ScopedSpinLock lock(s_mm_lock);
  649. if (region.is_kernel())
  650. m_kernel_regions.remove(&region);
  651. else
  652. m_user_regions.remove(&region);
  653. }
  654. void MemoryManager::dump_kernel_regions()
  655. {
  656. klog() << "Kernel regions:";
  657. klog() << "BEGIN END SIZE ACCESS NAME";
  658. ScopedSpinLock lock(s_mm_lock);
  659. for (auto& region : MM.m_kernel_regions) {
  660. klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
  661. }
  662. }
  663. }