MemoryManager.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. #include "CMOS.h"
  10. //#define MM_DEBUG
  11. //#define PAGE_FAULT_DEBUG
  12. static MemoryManager* s_the;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. // FIXME: This is not the best way to do memory map detection.
  20. // Rewrite to use BIOS int 15,e820 once we have VM86 support.
  21. word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15);
  22. word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17);
  23. kprintf("%u kB base memory\n", base_memory);
  24. kprintf("%u kB extended memory\n", ext_memory);
  25. m_ram_size = ext_memory * 1024;
  26. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  27. m_page_table_zero = (dword*)0x6000;
  28. initialize_paging();
  29. }
  30. MemoryManager::~MemoryManager()
  31. {
  32. }
  33. PageDirectory::PageDirectory(PhysicalAddress paddr)
  34. {
  35. kprintf("Instantiating PageDirectory with specific paddr P%x\n", paddr.get());
  36. m_directory_page = adopt(*new PhysicalPage(paddr, true));
  37. }
  38. PageDirectory::PageDirectory()
  39. {
  40. MM.populate_page_directory(*this);
  41. }
  42. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  43. {
  44. page_directory.m_directory_page = allocate_supervisor_physical_page();
  45. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  46. }
  47. void MemoryManager::initialize_paging()
  48. {
  49. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  50. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  51. memset(m_page_table_zero, 0, PAGE_SIZE);
  52. #ifdef MM_DEBUG
  53. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  54. #endif
  55. #ifdef MM_DEBUG
  56. dbgprintf("MM: Protect against null dereferences\n");
  57. #endif
  58. // Make null dereferences crash.
  59. map_protected(LinearAddress(0), PAGE_SIZE);
  60. #ifdef MM_DEBUG
  61. dbgprintf("MM: Identity map bottom 4MB\n");
  62. #endif
  63. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  64. // Every process shares these mappings.
  65. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  66. // Basic memory map:
  67. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  68. // (last page before 1MB) Used by quickmap_page().
  69. // 1 MB -> 2 MB kmalloc_eternal() space.
  70. // 2 MB -> 3 MB kmalloc() space.
  71. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  72. // 4 MB -> (max) MB Userspace physical pages (available for allocation!)
  73. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  74. m_free_supervisor_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), true)));
  75. dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
  76. for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
  77. m_free_physical_pages.append(adopt(*new PhysicalPage(PhysicalAddress(i), false)));
  78. m_quickmap_addr = LinearAddress((1 * MB) - PAGE_SIZE);
  79. #ifdef MM_DEBUG
  80. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  81. dbgprintf("MM: Installing page directory\n");
  82. #endif
  83. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  84. asm volatile(
  85. "movl %%cr0, %%eax\n"
  86. "orl $0x80000001, %%eax\n"
  87. "movl %%eax, %%cr0\n"
  88. :::"%eax", "memory");
  89. }
  90. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  91. {
  92. ASSERT(!page_directory.m_physical_pages.contains(index));
  93. auto physical_page = allocate_supervisor_physical_page();
  94. if (!physical_page)
  95. return nullptr;
  96. page_directory.m_physical_pages.set(index, physical_page.copyRef());
  97. return physical_page;
  98. }
  99. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  100. {
  101. InterruptDisabler disabler;
  102. // FIXME: ASSERT(laddr is 4KB aligned);
  103. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  104. auto pte_address = laddr.offset(offset);
  105. auto pte = ensure_pte(page_directory, pte_address);
  106. pte.set_physical_page_base(0);
  107. pte.set_user_allowed(false);
  108. pte.set_present(true);
  109. pte.set_writable(true);
  110. flush_tlb(pte_address);
  111. }
  112. }
  113. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  114. {
  115. ASSERT_INTERRUPTS_DISABLED();
  116. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  117. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  118. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  119. if (!pde.is_present()) {
  120. #ifdef MM_DEBUG
  121. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  122. #endif
  123. if (page_directory_index == 0) {
  124. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  125. pde.setPageTableBase((dword)m_page_table_zero);
  126. pde.set_user_allowed(false);
  127. pde.set_present(true);
  128. pde.set_writable(true);
  129. } else {
  130. ASSERT(&page_directory != m_kernel_page_directory.ptr());
  131. auto page_table = allocate_page_table(page_directory, page_directory_index);
  132. #ifdef MM_DEBUG
  133. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  134. &page_directory,
  135. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  136. page_directory.cr3(),
  137. page_directory_index,
  138. laddr.get(),
  139. page_table->paddr().get());
  140. #endif
  141. pde.setPageTableBase(page_table->paddr().get());
  142. pde.set_user_allowed(true);
  143. pde.set_present(true);
  144. pde.set_writable(true);
  145. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  146. }
  147. }
  148. return PageTableEntry(&pde.pageTableBase()[page_table_index]);
  149. }
  150. void MemoryManager::map_protected(LinearAddress laddr, size_t length)
  151. {
  152. InterruptDisabler disabler;
  153. // FIXME: ASSERT(linearAddress is 4KB aligned);
  154. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  155. auto pteAddress = laddr.offset(offset);
  156. auto pte = ensure_pte(kernel_page_directory(), pteAddress);
  157. pte.set_physical_page_base(pteAddress.get());
  158. pte.set_user_allowed(false);
  159. pte.set_present(false);
  160. pte.set_writable(false);
  161. flush_tlb(pteAddress);
  162. }
  163. }
  164. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  165. {
  166. InterruptDisabler disabler;
  167. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  168. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  169. auto pteAddress = laddr.offset(offset);
  170. auto pte = ensure_pte(page_directory, pteAddress);
  171. pte.set_physical_page_base(pteAddress.get());
  172. pte.set_user_allowed(false);
  173. pte.set_present(true);
  174. pte.set_writable(true);
  175. page_directory.flush(pteAddress);
  176. }
  177. }
  178. void MemoryManager::initialize()
  179. {
  180. s_the = new MemoryManager;
  181. }
  182. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  183. {
  184. ASSERT_INTERRUPTS_DISABLED();
  185. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  186. for (auto& region : process.m_regions) {
  187. if (region->contains(laddr))
  188. return region.ptr();
  189. }
  190. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  191. return nullptr;
  192. }
  193. const Region* MemoryManager::region_from_laddr(const Process& process, LinearAddress laddr)
  194. {
  195. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  196. for (auto& region : process.m_regions) {
  197. if (region->contains(laddr))
  198. return region.ptr();
  199. }
  200. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  201. return nullptr;
  202. }
  203. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  204. {
  205. ASSERT_INTERRUPTS_DISABLED();
  206. auto& vmo = region.vmo();
  207. auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
  208. #ifdef PAGE_FAULT_DEBUG
  209. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  210. #endif
  211. region.m_cow_map.set(page_index_in_region, false);
  212. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  213. remap_region_page(region, page_index_in_region, true);
  214. return true;
  215. }
  216. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  217. {
  218. ASSERT_INTERRUPTS_DISABLED();
  219. auto& vmo = region.vmo();
  220. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  221. #ifdef PAGE_FAULT_DEBUG
  222. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  223. #endif
  224. region.m_cow_map.set(page_index_in_region, false);
  225. remap_region_page(region, page_index_in_region, true);
  226. return true;
  227. }
  228. #ifdef PAGE_FAULT_DEBUG
  229. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  230. #endif
  231. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  232. auto physical_page = allocate_physical_page(ShouldZeroFill::No);
  233. byte* dest_ptr = quickmap_page(*physical_page);
  234. const byte* src_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  235. #ifdef PAGE_FAULT_DEBUG
  236. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  237. #endif
  238. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  239. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  240. unquickmap_page();
  241. region.m_cow_map.set(page_index_in_region, false);
  242. remap_region_page(region, page_index_in_region, true);
  243. return true;
  244. }
  245. bool Region::page_in()
  246. {
  247. ASSERT(m_page_directory);
  248. ASSERT(!vmo().is_anonymous());
  249. ASSERT(vmo().inode());
  250. #ifdef MM_DEBUG
  251. dbgprintf("MM: page_in %u pages\n", page_count());
  252. #endif
  253. for (size_t i = 0; i < page_count(); ++i) {
  254. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  255. if (vmo_page.is_null()) {
  256. bool success = MM.page_in_from_inode(*this, i);
  257. if (!success)
  258. return false;
  259. }
  260. MM.remap_region_page(*this, i, true);
  261. }
  262. return true;
  263. }
  264. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  265. {
  266. ASSERT(region.page_directory());
  267. auto& vmo = region.vmo();
  268. ASSERT(!vmo.is_anonymous());
  269. ASSERT(vmo.inode());
  270. auto& inode = *vmo.inode();
  271. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  272. ASSERT(vmo_page.is_null());
  273. vmo_page = allocate_physical_page(ShouldZeroFill::No);
  274. if (vmo_page.is_null()) {
  275. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  276. return false;
  277. }
  278. remap_region_page(region, page_index_in_region, true);
  279. byte* dest_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  280. #ifdef MM_DEBUG
  281. dbgprintf("MM: page_in_from_inode ready to read from inode, will write to L%x!\n", dest_ptr);
  282. #endif
  283. sti(); // Oh god here we go...
  284. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, dest_ptr, nullptr);
  285. if (nread < 0) {
  286. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  287. return false;
  288. }
  289. if (nread < PAGE_SIZE) {
  290. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  291. memset(dest_ptr + nread, 0, PAGE_SIZE - nread);
  292. }
  293. cli();
  294. return true;
  295. }
  296. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  297. {
  298. ASSERT_INTERRUPTS_DISABLED();
  299. #ifdef PAGE_FAULT_DEBUG
  300. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  301. #endif
  302. ASSERT(fault.laddr() != m_quickmap_addr);
  303. auto* region = region_from_laddr(*current, fault.laddr());
  304. if (!region) {
  305. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  306. return PageFaultResponse::ShouldCrash;
  307. }
  308. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  309. if (fault.is_not_present()) {
  310. if (region->vmo().inode()) {
  311. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  312. page_in_from_inode(*region, page_index_in_region);
  313. return PageFaultResponse::Continue;
  314. } else {
  315. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  316. zero_page(*region, page_index_in_region);
  317. return PageFaultResponse::Continue;
  318. }
  319. } else if (fault.is_protection_violation()) {
  320. if (region->m_cow_map.get(page_index_in_region)) {
  321. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  322. bool success = copy_on_write(*region, page_index_in_region);
  323. ASSERT(success);
  324. return PageFaultResponse::Continue;
  325. }
  326. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  327. } else {
  328. ASSERT_NOT_REACHED();
  329. }
  330. return PageFaultResponse::ShouldCrash;
  331. }
  332. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
  333. {
  334. InterruptDisabler disabler;
  335. if (1 > m_free_physical_pages.size())
  336. return { };
  337. #ifdef MM_DEBUG
  338. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  339. #endif
  340. auto physical_page = m_free_physical_pages.take_last();
  341. if (should_zero_fill == ShouldZeroFill::Yes) {
  342. auto* ptr = (dword*)quickmap_page(*physical_page);
  343. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  344. unquickmap_page();
  345. }
  346. return physical_page;
  347. }
  348. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  349. {
  350. InterruptDisabler disabler;
  351. if (1 > m_free_supervisor_physical_pages.size())
  352. return { };
  353. #ifdef MM_DEBUG
  354. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  355. #endif
  356. auto physical_page = m_free_supervisor_physical_pages.take_last();
  357. fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  358. return physical_page;
  359. }
  360. void MemoryManager::enter_process_paging_scope(Process& process)
  361. {
  362. InterruptDisabler disabler;
  363. current->m_tss.cr3 = process.page_directory().cr3();
  364. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  365. }
  366. void MemoryManager::flush_entire_tlb()
  367. {
  368. asm volatile(
  369. "mov %%cr3, %%eax\n"
  370. "mov %%eax, %%cr3\n"
  371. ::: "%eax", "memory"
  372. );
  373. }
  374. void MemoryManager::flush_tlb(LinearAddress laddr)
  375. {
  376. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  377. }
  378. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  379. {
  380. ASSERT_INTERRUPTS_DISABLED();
  381. ASSERT(!m_quickmap_in_use);
  382. m_quickmap_in_use = true;
  383. auto page_laddr = m_quickmap_addr;
  384. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  385. pte.set_physical_page_base(physical_page.paddr().get());
  386. pte.set_present(true);
  387. pte.set_writable(true);
  388. pte.set_user_allowed(false);
  389. flush_tlb(page_laddr);
  390. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  391. #ifdef MM_DEBUG
  392. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  393. #endif
  394. return page_laddr.as_ptr();
  395. }
  396. void MemoryManager::unquickmap_page()
  397. {
  398. ASSERT_INTERRUPTS_DISABLED();
  399. ASSERT(m_quickmap_in_use);
  400. auto page_laddr = m_quickmap_addr;
  401. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  402. #ifdef MM_DEBUG
  403. auto old_physical_address = pte.physical_page_base();
  404. #endif
  405. pte.set_physical_page_base(0);
  406. pte.set_present(false);
  407. pte.set_writable(false);
  408. flush_tlb(page_laddr);
  409. #ifdef MM_DEBUG
  410. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  411. #endif
  412. m_quickmap_in_use = false;
  413. }
  414. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  415. {
  416. ASSERT(region.page_directory());
  417. InterruptDisabler disabler;
  418. auto page_laddr = region.laddr().offset(page_index_in_region * PAGE_SIZE);
  419. auto pte = ensure_pte(*region.page_directory(), page_laddr);
  420. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  421. ASSERT(physical_page);
  422. pte.set_physical_page_base(physical_page->paddr().get());
  423. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  424. if (region.m_cow_map.get(page_index_in_region))
  425. pte.set_writable(false);
  426. else
  427. pte.set_writable(region.is_writable());
  428. pte.set_user_allowed(user_allowed);
  429. region.page_directory()->flush(page_laddr);
  430. #ifdef MM_DEBUG
  431. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  432. #endif
  433. }
  434. void MemoryManager::remap_region(Process& process, Region& region)
  435. {
  436. InterruptDisabler disabler;
  437. map_region_at_address(process.page_directory(), region, region.laddr(), true);
  438. }
  439. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  440. {
  441. InterruptDisabler disabler;
  442. region.set_page_directory(page_directory);
  443. auto& vmo = region.vmo();
  444. #ifdef MM_DEBUG
  445. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  446. #endif
  447. for (size_t i = 0; i < region.page_count(); ++i) {
  448. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  449. auto pte = ensure_pte(page_directory, page_laddr);
  450. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  451. if (physical_page) {
  452. pte.set_physical_page_base(physical_page->paddr().get());
  453. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  454. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  455. if (region.m_cow_map.get(region.first_page_index() + i))
  456. pte.set_writable(false);
  457. else
  458. pte.set_writable(region.is_writable());
  459. } else {
  460. pte.set_physical_page_base(0);
  461. pte.set_present(false);
  462. pte.set_writable(region.is_writable());
  463. }
  464. pte.set_user_allowed(user_allowed);
  465. page_directory.flush(page_laddr);
  466. #ifdef MM_DEBUG
  467. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  468. #endif
  469. }
  470. }
  471. bool MemoryManager::unmap_region(Region& region)
  472. {
  473. ASSERT(region.page_directory());
  474. InterruptDisabler disabler;
  475. for (size_t i = 0; i < region.page_count(); ++i) {
  476. auto laddr = region.laddr().offset(i * PAGE_SIZE);
  477. auto pte = ensure_pte(*region.page_directory(), laddr);
  478. pte.set_physical_page_base(0);
  479. pte.set_present(false);
  480. pte.set_writable(false);
  481. pte.set_user_allowed(false);
  482. region.page_directory()->flush(laddr);
  483. #ifdef MM_DEBUG
  484. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  485. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  486. #endif
  487. }
  488. region.release_page_directory();
  489. return true;
  490. }
  491. bool MemoryManager::map_region(Process& process, Region& region)
  492. {
  493. map_region_at_address(process.page_directory(), region, region.laddr(), true);
  494. return true;
  495. }
  496. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  497. {
  498. auto* region = region_from_laddr(process, laddr);
  499. return region && region->is_readable();
  500. }
  501. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  502. {
  503. auto* region = region_from_laddr(process, laddr);
  504. return region && region->is_writable();
  505. }
  506. RetainPtr<Region> Region::clone()
  507. {
  508. InterruptDisabler disabler;
  509. if (m_shared || (m_readable && !m_writable)) {
  510. // Create a new region backed by the same VMObject.
  511. return adopt(*new Region(laddr(), size(), m_vmo.copyRef(), m_offset_in_vmo, String(m_name), m_readable, m_writable));
  512. }
  513. dbgprintf("%s<%u> Region::clone(): cowing %s (L%x)\n",
  514. current->name().characters(),
  515. current->pid(),
  516. m_name.characters(),
  517. laddr().get());
  518. // Set up a COW region. The parent (this) region becomes COW as well!
  519. for (size_t i = 0; i < page_count(); ++i)
  520. m_cow_map.set(i, true);
  521. MM.remap_region(*current, *this);
  522. return adopt(*new Region(laddr(), size(), m_vmo->clone(), m_offset_in_vmo, String(m_name), m_readable, m_writable, true));
  523. }
  524. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  525. : m_laddr(a)
  526. , m_size(s)
  527. , m_vmo(VMObject::create_anonymous(s))
  528. , m_name(move(n))
  529. , m_readable(r)
  530. , m_writable(w)
  531. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  532. {
  533. m_vmo->set_name(m_name);
  534. MM.register_region(*this);
  535. }
  536. Region::Region(LinearAddress a, size_t s, RetainPtr<Inode>&& inode, String&& n, bool r, bool w)
  537. : m_laddr(a)
  538. , m_size(s)
  539. , m_vmo(VMObject::create_file_backed(move(inode), s))
  540. , m_name(move(n))
  541. , m_readable(r)
  542. , m_writable(w)
  543. , m_cow_map(Bitmap::create(m_vmo->page_count()))
  544. {
  545. MM.register_region(*this);
  546. }
  547. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  548. : m_laddr(a)
  549. , m_size(s)
  550. , m_offset_in_vmo(offset_in_vmo)
  551. , m_vmo(move(vmo))
  552. , m_name(move(n))
  553. , m_readable(r)
  554. , m_writable(w)
  555. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  556. {
  557. MM.register_region(*this);
  558. }
  559. Region::~Region()
  560. {
  561. if (m_page_directory) {
  562. MM.unmap_region(*this);
  563. ASSERT(!m_page_directory);
  564. }
  565. MM.unregister_region(*this);
  566. }
  567. PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor)
  568. : m_supervisor(supervisor)
  569. , m_paddr(paddr)
  570. {
  571. }
  572. void PhysicalPage::return_to_freelist()
  573. {
  574. ASSERT((paddr().get() & ~PAGE_MASK) == 0);
  575. InterruptDisabler disabler;
  576. m_retain_count = 1;
  577. if (m_supervisor)
  578. MM.m_free_supervisor_physical_pages.append(adopt(*this));
  579. else
  580. MM.m_free_physical_pages.append(adopt(*this));
  581. #ifdef MM_DEBUG
  582. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  583. #endif
  584. }
  585. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Inode>&& inode, size_t size)
  586. {
  587. InterruptDisabler disabler;
  588. if (inode->vmo())
  589. return static_cast<VMObject*>(inode->vmo());
  590. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  591. auto vmo = adopt(*new VMObject(move(inode), size));
  592. vmo->inode()->set_vmo(vmo.ptr());
  593. return vmo;
  594. }
  595. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  596. {
  597. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  598. return adopt(*new VMObject(size));
  599. }
  600. RetainPtr<VMObject> VMObject::create_framebuffer_wrapper(PhysicalAddress paddr, size_t size)
  601. {
  602. size = ceilDiv(size, PAGE_SIZE) * PAGE_SIZE;
  603. return adopt(*new VMObject(paddr, size));
  604. }
  605. RetainPtr<VMObject> VMObject::clone()
  606. {
  607. return adopt(*new VMObject(*this));
  608. }
  609. VMObject::VMObject(VMObject& other)
  610. : m_name(other.m_name)
  611. , m_anonymous(other.m_anonymous)
  612. , m_inode_offset(other.m_inode_offset)
  613. , m_size(other.m_size)
  614. , m_inode(other.m_inode)
  615. , m_physical_pages(other.m_physical_pages)
  616. {
  617. MM.register_vmo(*this);
  618. }
  619. VMObject::VMObject(size_t size)
  620. : m_anonymous(true)
  621. , m_size(size)
  622. {
  623. MM.register_vmo(*this);
  624. m_physical_pages.resize(page_count());
  625. }
  626. VMObject::VMObject(PhysicalAddress paddr, size_t size)
  627. : m_anonymous(true)
  628. , m_size(size)
  629. {
  630. MM.register_vmo(*this);
  631. for (size_t i = 0; i < size; i += PAGE_SIZE) {
  632. m_physical_pages.append(adopt(*new PhysicalPage(paddr.offset(i), false)));
  633. }
  634. ASSERT(m_physical_pages.size() == page_count());
  635. }
  636. VMObject::VMObject(RetainPtr<Inode>&& inode, size_t size)
  637. : m_size(size)
  638. , m_inode(move(inode))
  639. {
  640. m_physical_pages.resize(page_count());
  641. MM.register_vmo(*this);
  642. }
  643. VMObject::~VMObject()
  644. {
  645. if (m_inode) {
  646. ASSERT(m_inode->vmo() == this);
  647. m_inode->set_vmo(nullptr);
  648. }
  649. MM.unregister_vmo(*this);
  650. }
  651. int Region::commit()
  652. {
  653. InterruptDisabler disabler;
  654. #ifdef MM_DEBUG
  655. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), laddr().get());
  656. #endif
  657. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  658. if (!vmo().physical_pages()[i].is_null())
  659. continue;
  660. auto physical_page = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::Yes);
  661. if (!physical_page) {
  662. kprintf("MM: commit was unable to allocate a physical page\n");
  663. return -ENOMEM;
  664. }
  665. vmo().physical_pages()[i] = move(physical_page);
  666. MM.remap_region_page(*this, i, true);
  667. }
  668. return 0;
  669. }
  670. void MemoryManager::register_vmo(VMObject& vmo)
  671. {
  672. InterruptDisabler disabler;
  673. m_vmos.set(&vmo);
  674. }
  675. void MemoryManager::unregister_vmo(VMObject& vmo)
  676. {
  677. InterruptDisabler disabler;
  678. m_vmos.remove(&vmo);
  679. }
  680. void MemoryManager::register_region(Region& region)
  681. {
  682. InterruptDisabler disabler;
  683. m_regions.set(&region);
  684. }
  685. void MemoryManager::unregister_region(Region& region)
  686. {
  687. InterruptDisabler disabler;
  688. m_regions.remove(&region);
  689. }
  690. size_t Region::committed() const
  691. {
  692. size_t bytes = 0;
  693. for (size_t i = 0; i < page_count(); ++i) {
  694. if (m_vmo->physical_pages()[first_page_index() + i])
  695. bytes += PAGE_SIZE;
  696. }
  697. return bytes;
  698. }
  699. PageDirectory::~PageDirectory()
  700. {
  701. ASSERT_INTERRUPTS_DISABLED();
  702. #ifdef MM_DEBUG
  703. dbgprintf("MM: ~PageDirectory K%x\n", this);
  704. #endif
  705. }
  706. void PageDirectory::flush(LinearAddress laddr)
  707. {
  708. if (&current->page_directory() == this)
  709. MM.flush_tlb(laddr);
  710. }