Process.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/CoreDump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/RTC.h>
  33. #include <Kernel/Sections.h>
  34. #include <Kernel/StdLib.h>
  35. #include <Kernel/TTY/TTY.h>
  36. #include <Kernel/Thread.h>
  37. #include <Kernel/ThreadTracer.h>
  38. #include <LibC/errno_numbers.h>
  39. #include <LibC/limits.h>
  40. namespace Kernel {
  41. static void create_signal_trampoline();
  42. RecursiveSpinLock g_profiling_lock;
  43. static Atomic<pid_t> next_pid;
  44. static Singleton<ProtectedValue<Process::List>> s_processes;
  45. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  46. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  47. static Singleton<ProtectedValue<String>> s_hostname;
  48. ProtectedValue<String>& hostname()
  49. {
  50. return *s_hostname;
  51. }
  52. ProtectedValue<Process::List>& processes()
  53. {
  54. return *s_processes;
  55. }
  56. ProcessID Process::allocate_pid()
  57. {
  58. // Overflow is UB, and negative PIDs wreck havoc.
  59. // TODO: Handle PID overflow
  60. // For example: Use an Atomic<u32>, mask the most significant bit,
  61. // retry if PID is already taken as a PID, taken as a TID,
  62. // takes as a PGID, taken as a SID, or zero.
  63. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  64. }
  65. UNMAP_AFTER_INIT void Process::initialize()
  66. {
  67. g_modules = new HashMap<String, OwnPtr<Module>>;
  68. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  69. hostname().with_exclusive([&](auto& name) {
  70. name = "courage";
  71. });
  72. create_signal_trampoline();
  73. }
  74. NonnullRefPtrVector<Process> Process::all_processes()
  75. {
  76. NonnullRefPtrVector<Process> output;
  77. processes().with_shared([&](const auto& list) {
  78. output.ensure_capacity(list.size_slow());
  79. for (const auto& process : list)
  80. output.append(NonnullRefPtr<Process>(process));
  81. });
  82. return output;
  83. }
  84. bool Process::in_group(gid_t gid) const
  85. {
  86. return this->gid() == gid || extra_gids().contains_slow(gid);
  87. }
  88. void Process::kill_threads_except_self()
  89. {
  90. InterruptDisabler disabler;
  91. if (thread_count() <= 1)
  92. return;
  93. auto current_thread = Thread::current();
  94. for_each_thread([&](Thread& thread) {
  95. if (&thread == current_thread)
  96. return;
  97. if (auto state = thread.state(); state == Thread::State::Dead
  98. || state == Thread::State::Dying)
  99. return;
  100. // We need to detach this thread in case it hasn't been joined
  101. thread.detach();
  102. thread.set_should_die();
  103. });
  104. u32 dropped_lock_count = 0;
  105. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  106. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  107. }
  108. void Process::kill_all_threads()
  109. {
  110. for_each_thread([&](Thread& thread) {
  111. // We need to detach this thread in case it hasn't been joined
  112. thread.detach();
  113. thread.set_should_die();
  114. });
  115. }
  116. void Process::register_new(Process& process)
  117. {
  118. // Note: this is essentially the same like process->ref()
  119. RefPtr<Process> new_process = process;
  120. processes().with_exclusive([&](auto& list) {
  121. list.prepend(process);
  122. });
  123. ProcFSComponentRegistry::the().register_new_process(process);
  124. }
  125. RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  126. {
  127. auto parts = path.split('/');
  128. if (arguments.is_empty()) {
  129. arguments.append(parts.last());
  130. }
  131. RefPtr<Custody> cwd;
  132. if (auto parent = Process::from_pid(parent_pid))
  133. cwd = parent->m_cwd;
  134. if (!cwd)
  135. cwd = VirtualFileSystem::the().root_custody();
  136. auto process = Process::create(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty);
  137. if (!first_thread)
  138. return {};
  139. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  140. first_thread = nullptr;
  141. return {};
  142. }
  143. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  144. auto description = device_to_use_as_tty.open(O_RDWR).value();
  145. auto setup_description = [&process, &description](int fd) {
  146. process->m_fds.m_fds_metadatas[fd].allocate();
  147. process->m_fds[fd].set(*description);
  148. };
  149. setup_description(0);
  150. setup_description(1);
  151. setup_description(2);
  152. error = process->exec(path, move(arguments), move(environment));
  153. if (error != 0) {
  154. dbgln("Failed to exec {}: {}", path, error);
  155. first_thread = nullptr;
  156. return {};
  157. }
  158. register_new(*process);
  159. error = 0;
  160. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockCondition::finalize().
  161. (void)process.leak_ref();
  162. return process;
  163. }
  164. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  165. {
  166. auto process = Process::create(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true);
  167. if (!first_thread || !process)
  168. return {};
  169. #if ARCH(I386)
  170. first_thread->regs().eip = (FlatPtr)entry;
  171. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  172. #else
  173. first_thread->regs().rip = (FlatPtr)entry;
  174. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  175. #endif
  176. if (do_register == RegisterProcess::Yes)
  177. register_new(*process);
  178. ScopedSpinLock lock(g_scheduler_lock);
  179. first_thread->set_affinity(affinity);
  180. first_thread->set_state(Thread::State::Runnable);
  181. return process;
  182. }
  183. void Process::protect_data()
  184. {
  185. m_protected_data_refs.unref([&]() {
  186. MM.set_page_writable_direct(VirtualAddress { this }, false);
  187. });
  188. }
  189. void Process::unprotect_data()
  190. {
  191. m_protected_data_refs.ref([&]() {
  192. MM.set_page_writable_direct(VirtualAddress { this }, true);
  193. });
  194. }
  195. RefPtr<Process> Process::create(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  196. {
  197. auto process = adopt_ref_if_nonnull(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty));
  198. if (!process)
  199. return {};
  200. auto result = process->attach_resources(first_thread, fork_parent);
  201. if (result.is_error())
  202. return {};
  203. return process;
  204. }
  205. Process::Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  206. : m_name(move(name))
  207. , m_is_kernel_process(is_kernel_process)
  208. , m_executable(move(executable))
  209. , m_cwd(move(cwd))
  210. , m_tty(tty)
  211. , m_wait_block_condition(*this)
  212. {
  213. // Ensure that we protect the process data when exiting the constructor.
  214. ProtectedDataMutationScope scope { *this };
  215. m_pid = allocate_pid();
  216. m_ppid = ppid;
  217. m_uid = uid;
  218. m_gid = gid;
  219. m_euid = uid;
  220. m_egid = gid;
  221. m_suid = uid;
  222. m_sgid = gid;
  223. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  224. }
  225. KResult Process::attach_resources(RefPtr<Thread>& first_thread, Process* fork_parent)
  226. {
  227. m_space = Memory::AddressSpace::try_create(fork_parent ? &fork_parent->address_space() : nullptr);
  228. if (!m_space)
  229. return ENOMEM;
  230. if (fork_parent) {
  231. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  232. first_thread = Thread::current()->clone(*this);
  233. if (!first_thread)
  234. return ENOMEM;
  235. } else {
  236. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  237. auto thread_or_error = Thread::try_create(*this);
  238. if (thread_or_error.is_error())
  239. return thread_or_error.error();
  240. first_thread = thread_or_error.release_value();
  241. first_thread->detach();
  242. }
  243. return KSuccess;
  244. }
  245. Process::~Process()
  246. {
  247. unprotect_data();
  248. VERIFY(thread_count() == 0); // all threads should have been finalized
  249. VERIFY(!m_alarm_timer);
  250. PerformanceManager::add_process_exit_event(*this);
  251. if (m_list_node.is_in_list())
  252. processes().with_exclusive([&](auto& list) {
  253. list.remove(*this);
  254. });
  255. }
  256. // Make sure the compiler doesn't "optimize away" this function:
  257. extern void signal_trampoline_dummy() __attribute__((used));
  258. void signal_trampoline_dummy()
  259. {
  260. #if ARCH(I386)
  261. // The trampoline preserves the current eax, pushes the signal code and
  262. // then calls the signal handler. We do this because, when interrupting a
  263. // blocking syscall, that syscall may return some special error code in eax;
  264. // This error code would likely be overwritten by the signal handler, so it's
  265. // necessary to preserve it here.
  266. asm(
  267. ".intel_syntax noprefix\n"
  268. ".globl asm_signal_trampoline\n"
  269. "asm_signal_trampoline:\n"
  270. "push ebp\n"
  271. "mov ebp, esp\n"
  272. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  273. "sub esp, 4\n" // align the stack to 16 bytes
  274. "mov eax, [ebp+12]\n" // push the signal code
  275. "push eax\n"
  276. "call [ebp+8]\n" // call the signal handler
  277. "add esp, 8\n"
  278. "mov eax, %P0\n"
  279. "int 0x82\n" // sigreturn syscall
  280. ".globl asm_signal_trampoline_end\n"
  281. "asm_signal_trampoline_end:\n"
  282. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  283. #elif ARCH(X86_64)
  284. // The trampoline preserves the current rax, pushes the signal code and
  285. // then calls the signal handler. We do this because, when interrupting a
  286. // blocking syscall, that syscall may return some special error code in eax;
  287. // This error code would likely be overwritten by the signal handler, so it's
  288. // necessary to preserve it here.
  289. asm(
  290. ".intel_syntax noprefix\n"
  291. ".globl asm_signal_trampoline\n"
  292. "asm_signal_trampoline:\n"
  293. "push rbp\n"
  294. "mov rbp, rsp\n"
  295. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  296. "sub rsp, 8\n" // align the stack to 16 bytes
  297. "mov rdi, [rbp+24]\n" // push the signal code
  298. "call [rbp+16]\n" // call the signal handler
  299. "add rsp, 8\n"
  300. "mov rax, %P0\n"
  301. "int 0x82\n" // sigreturn syscall
  302. ".globl asm_signal_trampoline_end\n"
  303. "asm_signal_trampoline_end:\n"
  304. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  305. #endif
  306. }
  307. extern "C" char const asm_signal_trampoline[];
  308. extern "C" char const asm_signal_trampoline_end[];
  309. void create_signal_trampoline()
  310. {
  311. // NOTE: We leak this region.
  312. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).leak_ptr();
  313. g_signal_trampoline_region->set_syscall_region(true);
  314. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  315. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  316. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  317. g_signal_trampoline_region->set_writable(false);
  318. g_signal_trampoline_region->remap();
  319. }
  320. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  321. {
  322. VERIFY(!is_dead());
  323. VERIFY(Process::current() == this);
  324. if (out_of_memory) {
  325. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  326. } else {
  327. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  328. auto* symbol = symbolicate_kernel_address(ip);
  329. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  330. } else {
  331. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  332. }
  333. dump_backtrace();
  334. }
  335. {
  336. ProtectedDataMutationScope scope { *this };
  337. m_termination_signal = signal;
  338. }
  339. set_dump_core(!out_of_memory);
  340. address_space().dump_regions();
  341. VERIFY(is_user_process());
  342. die();
  343. // We can not return from here, as there is nowhere
  344. // to unwind to, so die right away.
  345. Thread::current()->die_if_needed();
  346. VERIFY_NOT_REACHED();
  347. }
  348. RefPtr<Process> Process::from_pid(ProcessID pid)
  349. {
  350. return processes().with_shared([&](const auto& list) -> RefPtr<Process> {
  351. for (auto& process : list) {
  352. if (process.pid() == pid)
  353. return &process;
  354. }
  355. return {};
  356. });
  357. }
  358. const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
  359. {
  360. ScopedSpinLock lock(m_fds_lock);
  361. VERIFY(m_fds_metadatas[i].is_allocated());
  362. return m_fds_metadatas[i];
  363. }
  364. Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
  365. {
  366. ScopedSpinLock lock(m_fds_lock);
  367. VERIFY(m_fds_metadatas[i].is_allocated());
  368. return m_fds_metadatas[i];
  369. }
  370. RefPtr<FileDescription> Process::FileDescriptions::file_description(int fd) const
  371. {
  372. ScopedSpinLock lock(m_fds_lock);
  373. if (fd < 0)
  374. return nullptr;
  375. if (static_cast<size_t>(fd) < m_fds_metadatas.size())
  376. return m_fds_metadatas[fd].description();
  377. return nullptr;
  378. }
  379. void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
  380. {
  381. ScopedSpinLock lock(m_fds_lock);
  382. for (auto& file_description_metadata : m_fds_metadatas) {
  383. callback(file_description_metadata);
  384. }
  385. }
  386. void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
  387. {
  388. ScopedSpinLock lock(m_fds_lock);
  389. for (auto& file_description_metadata : m_fds_metadatas) {
  390. callback(file_description_metadata);
  391. }
  392. }
  393. size_t Process::FileDescriptions::open_count() const
  394. {
  395. size_t count = 0;
  396. enumerate([&](auto& file_description_metadata) {
  397. if (file_description_metadata.is_valid())
  398. ++count;
  399. });
  400. return count;
  401. }
  402. KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
  403. {
  404. ScopedSpinLock lock(m_fds_lock);
  405. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  406. if (!m_fds_metadatas[i].is_allocated()) {
  407. m_fds_metadatas[i].allocate();
  408. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  409. }
  410. }
  411. return EMFILE;
  412. }
  413. Time kgettimeofday()
  414. {
  415. return TimeManagement::now();
  416. }
  417. siginfo_t Process::wait_info()
  418. {
  419. siginfo_t siginfo {};
  420. siginfo.si_signo = SIGCHLD;
  421. siginfo.si_pid = pid().value();
  422. siginfo.si_uid = uid();
  423. if (m_termination_signal) {
  424. siginfo.si_status = m_termination_signal;
  425. siginfo.si_code = CLD_KILLED;
  426. } else {
  427. siginfo.si_status = m_termination_status;
  428. siginfo.si_code = CLD_EXITED;
  429. }
  430. return siginfo;
  431. }
  432. Custody& Process::current_directory()
  433. {
  434. if (!m_cwd)
  435. m_cwd = VirtualFileSystem::the().root_custody();
  436. return *m_cwd;
  437. }
  438. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(char const* user_path, size_t path_length) const
  439. {
  440. if (path_length == 0)
  441. return EINVAL;
  442. if (path_length > PATH_MAX)
  443. return ENAMETOOLONG;
  444. auto string_or_error = try_copy_kstring_from_user(user_path, path_length);
  445. if (string_or_error.is_error())
  446. return string_or_error.error();
  447. return string_or_error.release_value();
  448. }
  449. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  450. {
  451. return get_syscall_path_argument(path.characters, path.length);
  452. }
  453. bool Process::dump_core()
  454. {
  455. VERIFY(is_dumpable());
  456. VERIFY(should_core_dump());
  457. dbgln("Generating coredump for pid: {}", pid().value());
  458. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), RTC::now());
  459. auto coredump = CoreDump::create(*this, coredump_path);
  460. if (!coredump)
  461. return false;
  462. return !coredump->write().is_error();
  463. }
  464. bool Process::dump_perfcore()
  465. {
  466. VERIFY(is_dumpable());
  467. VERIFY(m_perf_event_buffer);
  468. dbgln("Generating perfcore for pid: {}", pid().value());
  469. // Try to generate a filename which isn't already used.
  470. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  471. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  472. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  473. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  474. if (description_or_error.is_error()) {
  475. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  476. return false;
  477. }
  478. auto& description = *description_or_error.value();
  479. KBufferBuilder builder;
  480. if (!m_perf_event_buffer->to_json(builder)) {
  481. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  482. return false;
  483. }
  484. auto json = builder.build();
  485. if (!json) {
  486. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  487. return false;
  488. }
  489. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  490. if (description.write(json_buffer, json->size()).is_error()) {
  491. return false;
  492. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  493. }
  494. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  495. return true;
  496. }
  497. void Process::finalize()
  498. {
  499. VERIFY(Thread::current() == g_finalizer);
  500. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  501. if (is_dumpable()) {
  502. if (m_should_dump_core)
  503. dump_core();
  504. if (m_perf_event_buffer) {
  505. dump_perfcore();
  506. TimeManagement::the().disable_profile_timer();
  507. }
  508. }
  509. m_threads_for_coredump.clear();
  510. if (m_alarm_timer)
  511. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  512. m_fds.clear();
  513. m_tty = nullptr;
  514. m_executable = nullptr;
  515. m_cwd = nullptr;
  516. m_root_directory = nullptr;
  517. m_root_directory_relative_to_global_root = nullptr;
  518. m_arguments.clear();
  519. m_environment.clear();
  520. // Note: We need to remove the references from the ProcFS registrar
  521. // If we don't do it here, we can't drop the object later, and we can't
  522. // do this from the destructor because the state of the object doesn't
  523. // allow us to take references anymore.
  524. ProcFSComponentRegistry::the().unregister_process(*this);
  525. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  526. {
  527. // FIXME: PID/TID BUG
  528. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  529. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  530. parent_thread->send_signal(SIGCHLD, this);
  531. }
  532. }
  533. if (!!ppid()) {
  534. if (auto parent = Process::from_pid(ppid())) {
  535. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  536. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  537. }
  538. }
  539. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  540. m_space->remove_all_regions({});
  541. VERIFY(ref_count() > 0);
  542. // WaitBlockCondition::finalize will be in charge of dropping the last
  543. // reference if there are still waiters around, or whenever the last
  544. // waitable states are consumed. Unless there is no parent around
  545. // anymore, in which case we'll just drop it right away.
  546. m_wait_block_condition.finalize();
  547. }
  548. void Process::disowned_by_waiter(Process& process)
  549. {
  550. m_wait_block_condition.disowned_by_waiter(process);
  551. }
  552. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  553. {
  554. if (auto parent = Process::from_pid(ppid()))
  555. parent->m_wait_block_condition.unblock(*this, flags, signal);
  556. }
  557. void Process::die()
  558. {
  559. auto expected = State::Running;
  560. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  561. // It's possible that another thread calls this at almost the same time
  562. // as we can't always instantly kill other threads (they may be blocked)
  563. // So if we already were called then other threads should stop running
  564. // momentarily and we only really need to service the first thread
  565. return;
  566. }
  567. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  568. // getting an EOF when the last process using the slave PTY dies.
  569. // If the master PTY owner relies on an EOF to know when to wait() on a
  570. // slave owner, we have to allow the PTY pair to be torn down.
  571. m_tty = nullptr;
  572. VERIFY(m_threads_for_coredump.is_empty());
  573. for_each_thread([&](auto& thread) {
  574. m_threads_for_coredump.append(thread);
  575. });
  576. processes().with_shared([&](const auto& list) {
  577. for (auto it = list.begin(); it != list.end();) {
  578. auto& process = *it;
  579. ++it;
  580. if (process.has_tracee_thread(pid())) {
  581. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  582. process.stop_tracing();
  583. auto err = process.send_signal(SIGSTOP, this);
  584. if (err.is_error())
  585. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  586. }
  587. }
  588. });
  589. kill_all_threads();
  590. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  591. KCOVDevice::free_process();
  592. #endif
  593. }
  594. void Process::terminate_due_to_signal(u8 signal)
  595. {
  596. VERIFY_INTERRUPTS_DISABLED();
  597. VERIFY(signal < 32);
  598. VERIFY(Process::current() == this);
  599. dbgln("Terminating {} due to signal {}", *this, signal);
  600. {
  601. ProtectedDataMutationScope scope { *this };
  602. m_termination_status = 0;
  603. m_termination_signal = signal;
  604. }
  605. die();
  606. }
  607. KResult Process::send_signal(u8 signal, Process* sender)
  608. {
  609. // Try to send it to the "obvious" main thread:
  610. auto receiver_thread = Thread::from_tid(pid().value());
  611. // If the main thread has died, there may still be other threads:
  612. if (!receiver_thread) {
  613. // The first one should be good enough.
  614. // Neither kill(2) nor kill(3) specify any selection precedure.
  615. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  616. receiver_thread = &thread;
  617. return IterationDecision::Break;
  618. });
  619. }
  620. if (receiver_thread) {
  621. receiver_thread->send_signal(signal, sender);
  622. return KSuccess;
  623. }
  624. return ESRCH;
  625. }
  626. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity, bool joinable)
  627. {
  628. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  629. // FIXME: Do something with guard pages?
  630. auto thread_or_error = Thread::try_create(*this);
  631. if (thread_or_error.is_error())
  632. return {};
  633. auto thread = thread_or_error.release_value();
  634. thread->set_name(move(name));
  635. thread->set_affinity(affinity);
  636. thread->set_priority(priority);
  637. if (!joinable)
  638. thread->detach();
  639. auto& regs = thread->regs();
  640. #if ARCH(I386)
  641. regs.eip = (FlatPtr)entry;
  642. regs.esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.rsp
  643. #else
  644. regs.rip = (FlatPtr)entry;
  645. regs.rsp = FlatPtr(entry_data); // entry function argument is expected to be in regs.rsp
  646. #endif
  647. ScopedSpinLock lock(g_scheduler_lock);
  648. thread->set_state(Thread::State::Runnable);
  649. return thread;
  650. }
  651. void Process::FileDescriptionAndFlags::clear()
  652. {
  653. // FIXME: Verify Process::m_fds_lock is locked!
  654. m_description = nullptr;
  655. m_flags = 0;
  656. m_global_procfs_inode_index = 0;
  657. }
  658. void Process::FileDescriptionAndFlags::refresh_inode_index()
  659. {
  660. // FIXME: Verify Process::m_fds_lock is locked!
  661. m_global_procfs_inode_index = ProcFSComponentRegistry::the().allocate_inode_index();
  662. }
  663. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  664. {
  665. // FIXME: Verify Process::m_fds_lock is locked!
  666. m_description = move(description);
  667. m_flags = flags;
  668. m_global_procfs_inode_index = ProcFSComponentRegistry::the().allocate_inode_index();
  669. }
  670. Custody& Process::root_directory()
  671. {
  672. if (!m_root_directory)
  673. m_root_directory = VirtualFileSystem::the().root_custody();
  674. return *m_root_directory;
  675. }
  676. Custody& Process::root_directory_relative_to_global_root()
  677. {
  678. if (!m_root_directory_relative_to_global_root)
  679. m_root_directory_relative_to_global_root = root_directory();
  680. return *m_root_directory_relative_to_global_root;
  681. }
  682. void Process::set_root_directory(const Custody& root)
  683. {
  684. m_root_directory = root;
  685. }
  686. void Process::set_tty(TTY* tty)
  687. {
  688. m_tty = tty;
  689. }
  690. KResult Process::start_tracing_from(ProcessID tracer)
  691. {
  692. auto thread_tracer = ThreadTracer::create(tracer);
  693. if (!thread_tracer)
  694. return ENOMEM;
  695. m_tracer = move(thread_tracer);
  696. return KSuccess;
  697. }
  698. void Process::stop_tracing()
  699. {
  700. m_tracer = nullptr;
  701. }
  702. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  703. {
  704. VERIFY(m_tracer.ptr());
  705. m_tracer->set_regs(regs);
  706. thread.send_urgent_signal_to_self(SIGTRAP);
  707. }
  708. bool Process::create_perf_events_buffer_if_needed()
  709. {
  710. if (!m_perf_event_buffer) {
  711. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  712. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  713. }
  714. return !!m_perf_event_buffer;
  715. }
  716. void Process::delete_perf_events_buffer()
  717. {
  718. if (m_perf_event_buffer)
  719. m_perf_event_buffer = nullptr;
  720. }
  721. bool Process::remove_thread(Thread& thread)
  722. {
  723. ProtectedDataMutationScope scope { *this };
  724. auto thread_cnt_before = m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  725. VERIFY(thread_cnt_before != 0);
  726. thread_list().with([&](auto& thread_list) {
  727. thread_list.remove(thread);
  728. });
  729. return thread_cnt_before == 1;
  730. }
  731. bool Process::add_thread(Thread& thread)
  732. {
  733. ProtectedDataMutationScope scope { *this };
  734. bool is_first = m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  735. thread_list().with([&](auto& thread_list) {
  736. thread_list.append(thread);
  737. });
  738. return is_first;
  739. }
  740. void Process::set_dumpable(bool dumpable)
  741. {
  742. if (dumpable == m_dumpable)
  743. return;
  744. ProtectedDataMutationScope scope { *this };
  745. m_dumpable = dumpable;
  746. }
  747. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  748. {
  749. // Write it into the first available property slot.
  750. for (auto& slot : m_coredump_properties) {
  751. if (slot.key)
  752. continue;
  753. slot.key = move(key);
  754. slot.value = move(value);
  755. return KSuccess;
  756. }
  757. return ENOBUFS;
  758. }
  759. KResult Process::try_set_coredump_property(StringView key, StringView value)
  760. {
  761. auto key_kstring = KString::try_create(key);
  762. auto value_kstring = KString::try_create(value);
  763. if (key_kstring && value_kstring)
  764. return set_coredump_property(key_kstring.release_nonnull(), value_kstring.release_nonnull());
  765. return ENOMEM;
  766. };
  767. }