MathObject.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. *
  5. * SPDX-License-Identifier: BSD-2-Clause
  6. */
  7. #include <AK/Function.h>
  8. #include <AK/Random.h>
  9. #include <LibJS/Runtime/GlobalObject.h>
  10. #include <LibJS/Runtime/MathObject.h>
  11. #include <math.h>
  12. namespace JS {
  13. MathObject::MathObject(GlobalObject& global_object)
  14. : Object(*global_object.object_prototype())
  15. {
  16. }
  17. void MathObject::initialize(GlobalObject& global_object)
  18. {
  19. auto& vm = this->vm();
  20. Object::initialize(global_object);
  21. u8 attr = Attribute::Writable | Attribute::Configurable;
  22. define_native_function(vm.names.abs, abs, 1, attr);
  23. define_native_function(vm.names.random, random, 0, attr);
  24. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  25. define_native_function(vm.names.floor, floor, 1, attr);
  26. define_native_function(vm.names.ceil, ceil, 1, attr);
  27. define_native_function(vm.names.round, round, 1, attr);
  28. define_native_function(vm.names.max, max, 2, attr);
  29. define_native_function(vm.names.min, min, 2, attr);
  30. define_native_function(vm.names.trunc, trunc, 1, attr);
  31. define_native_function(vm.names.sin, sin, 1, attr);
  32. define_native_function(vm.names.cos, cos, 1, attr);
  33. define_native_function(vm.names.tan, tan, 1, attr);
  34. define_native_function(vm.names.pow, pow, 2, attr);
  35. define_native_function(vm.names.exp, exp, 1, attr);
  36. define_native_function(vm.names.expm1, expm1, 1, attr);
  37. define_native_function(vm.names.sign, sign, 1, attr);
  38. define_native_function(vm.names.clz32, clz32, 1, attr);
  39. define_native_function(vm.names.acos, acos, 1, attr);
  40. define_native_function(vm.names.acosh, acosh, 1, attr);
  41. define_native_function(vm.names.asin, asin, 1, attr);
  42. define_native_function(vm.names.asinh, asinh, 1, attr);
  43. define_native_function(vm.names.atan, atan, 1, attr);
  44. define_native_function(vm.names.atanh, atanh, 1, attr);
  45. define_native_function(vm.names.log1p, log1p, 1, attr);
  46. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  47. define_native_function(vm.names.atan2, atan2, 2, attr);
  48. define_native_function(vm.names.fround, fround, 1, attr);
  49. define_native_function(vm.names.hypot, hypot, 2, attr);
  50. define_native_function(vm.names.log, log, 1, attr);
  51. define_native_function(vm.names.log2, log2, 1, attr);
  52. define_native_function(vm.names.log10, log10, 1, attr);
  53. define_native_function(vm.names.sinh, sinh, 1, attr);
  54. define_native_function(vm.names.cosh, cosh, 1, attr);
  55. define_native_function(vm.names.tanh, tanh, 1, attr);
  56. define_property(vm.names.E, Value(M_E), 0);
  57. define_property(vm.names.LN2, Value(M_LN2), 0);
  58. define_property(vm.names.LN10, Value(M_LN10), 0);
  59. define_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  60. define_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  61. define_property(vm.names.PI, Value(M_PI), 0);
  62. define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  63. define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  64. define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
  65. }
  66. MathObject::~MathObject()
  67. {
  68. }
  69. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  70. {
  71. auto number = vm.argument(0).to_number(global_object);
  72. if (vm.exception())
  73. return {};
  74. if (number.is_nan())
  75. return js_nan();
  76. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  77. }
  78. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  79. {
  80. #ifdef __serenity__
  81. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  82. #else
  83. double r = (double)rand() / (double)RAND_MAX;
  84. #endif
  85. return Value(r);
  86. }
  87. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  88. {
  89. auto number = vm.argument(0).to_number(global_object);
  90. if (vm.exception())
  91. return {};
  92. if (number.is_nan())
  93. return js_nan();
  94. return Value(::sqrt(number.as_double()));
  95. }
  96. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  97. {
  98. auto number = vm.argument(0).to_number(global_object);
  99. if (vm.exception())
  100. return {};
  101. if (number.is_nan())
  102. return js_nan();
  103. return Value(::floor(number.as_double()));
  104. }
  105. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  106. {
  107. auto number = vm.argument(0).to_number(global_object);
  108. if (vm.exception())
  109. return {};
  110. if (number.is_nan())
  111. return js_nan();
  112. auto number_double = number.as_double();
  113. if (number_double < 0 && number_double > -1)
  114. return Value(-0.f);
  115. return Value(::ceil(number.as_double()));
  116. }
  117. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  118. {
  119. auto number = vm.argument(0).to_number(global_object);
  120. if (vm.exception())
  121. return {};
  122. if (number.is_nan())
  123. return js_nan();
  124. double intpart = 0;
  125. double frac = modf(number.as_double(), &intpart);
  126. if (intpart >= 0) {
  127. if (frac >= 0.5)
  128. intpart += 1.0;
  129. } else {
  130. if (frac < -0.5)
  131. intpart -= 1.0;
  132. }
  133. return Value(intpart);
  134. }
  135. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  136. {
  137. if (!vm.argument_count())
  138. return js_negative_infinity();
  139. auto max = vm.argument(0).to_number(global_object);
  140. if (vm.exception())
  141. return {};
  142. for (size_t i = 1; i < vm.argument_count(); ++i) {
  143. auto cur = vm.argument(i).to_number(global_object);
  144. if (vm.exception())
  145. return {};
  146. if ((max.is_negative_zero() && cur.is_positive_zero()) || cur.as_double() > max.as_double())
  147. max = cur;
  148. }
  149. return max;
  150. }
  151. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  152. {
  153. if (!vm.argument_count())
  154. return js_infinity();
  155. auto min = vm.argument(0).to_number(global_object);
  156. if (vm.exception())
  157. return {};
  158. for (size_t i = 1; i < vm.argument_count(); ++i) {
  159. auto cur = vm.argument(i).to_number(global_object);
  160. if (vm.exception())
  161. return {};
  162. if ((min.is_positive_zero() && cur.is_negative_zero()) || cur.as_double() < min.as_double())
  163. min = cur;
  164. }
  165. return min;
  166. }
  167. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  168. {
  169. auto number = vm.argument(0).to_number(global_object);
  170. if (vm.exception())
  171. return {};
  172. if (number.is_nan())
  173. return js_nan();
  174. if (number.as_double() < 0)
  175. return MathObject::ceil(vm, global_object);
  176. return MathObject::floor(vm, global_object);
  177. }
  178. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  179. {
  180. auto number = vm.argument(0).to_number(global_object);
  181. if (vm.exception())
  182. return {};
  183. if (number.is_nan())
  184. return js_nan();
  185. return Value(::sin(number.as_double()));
  186. }
  187. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  188. {
  189. auto number = vm.argument(0).to_number(global_object);
  190. if (vm.exception())
  191. return {};
  192. if (number.is_nan())
  193. return js_nan();
  194. return Value(::cos(number.as_double()));
  195. }
  196. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  197. {
  198. auto number = vm.argument(0).to_number(global_object);
  199. if (vm.exception())
  200. return {};
  201. if (number.is_nan())
  202. return js_nan();
  203. return Value(::tan(number.as_double()));
  204. }
  205. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  206. {
  207. return JS::exp(global_object, vm.argument(0), vm.argument(1));
  208. }
  209. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  210. {
  211. auto number = vm.argument(0).to_number(global_object);
  212. if (vm.exception())
  213. return {};
  214. if (number.is_nan())
  215. return js_nan();
  216. return Value(::exp(number.as_double()));
  217. }
  218. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  219. {
  220. auto number = vm.argument(0).to_number(global_object);
  221. if (vm.exception())
  222. return {};
  223. if (number.is_nan())
  224. return js_nan();
  225. return Value(::expm1(number.as_double()));
  226. }
  227. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  228. {
  229. auto number = vm.argument(0).to_number(global_object);
  230. if (vm.exception())
  231. return {};
  232. if (number.is_positive_zero())
  233. return Value(0);
  234. if (number.is_negative_zero())
  235. return Value(-0.0);
  236. if (number.as_double() > 0)
  237. return Value(1);
  238. if (number.as_double() < 0)
  239. return Value(-1);
  240. return js_nan();
  241. }
  242. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  243. {
  244. auto number = vm.argument(0).to_number(global_object);
  245. if (vm.exception())
  246. return {};
  247. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  248. return Value(32);
  249. return Value(__builtin_clz((unsigned)number.as_double()));
  250. }
  251. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  252. {
  253. auto number = vm.argument(0).to_number(global_object);
  254. if (vm.exception())
  255. return {};
  256. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  257. return js_nan();
  258. if (number.as_double() == 1)
  259. return Value(0);
  260. return Value(::acos(number.as_double()));
  261. }
  262. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  263. {
  264. auto number = vm.argument(0).to_number(global_object);
  265. if (vm.exception())
  266. return {};
  267. if (number.as_double() < 1)
  268. return js_nan();
  269. return Value(::acosh(number.as_double()));
  270. }
  271. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  272. {
  273. auto number = vm.argument(0).to_number(global_object);
  274. if (vm.exception())
  275. return {};
  276. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  277. return number;
  278. return Value(::asin(number.as_double()));
  279. }
  280. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  281. {
  282. auto number = vm.argument(0).to_number(global_object);
  283. if (vm.exception())
  284. return {};
  285. return Value(::asinh(number.as_double()));
  286. }
  287. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  288. {
  289. auto number = vm.argument(0).to_number(global_object);
  290. if (vm.exception())
  291. return {};
  292. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  293. return number;
  294. if (number.is_positive_infinity())
  295. return Value(M_PI_2);
  296. if (number.is_negative_infinity())
  297. return Value(-M_PI_2);
  298. return Value(::atan(number.as_double()));
  299. }
  300. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  301. {
  302. auto number = vm.argument(0).to_number(global_object);
  303. if (vm.exception())
  304. return {};
  305. if (number.as_double() > 1 || number.as_double() < -1)
  306. return js_nan();
  307. return Value(::atanh(number.as_double()));
  308. }
  309. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  310. {
  311. auto number = vm.argument(0).to_number(global_object);
  312. if (vm.exception())
  313. return {};
  314. if (number.as_double() < -1)
  315. return js_nan();
  316. return Value(::log1p(number.as_double()));
  317. }
  318. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  319. {
  320. auto number = vm.argument(0).to_number(global_object);
  321. if (vm.exception())
  322. return {};
  323. return Value(::cbrt(number.as_double()));
  324. }
  325. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  326. {
  327. auto y = vm.argument(0).to_number(global_object), x = vm.argument(1).to_number(global_object);
  328. auto pi_4 = M_PI_2 / 2;
  329. auto three_pi_4 = pi_4 + M_PI_2;
  330. if (vm.exception())
  331. return {};
  332. if (x.is_positive_zero()) {
  333. if (y.is_positive_zero() || y.is_negative_zero())
  334. return y;
  335. else
  336. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  337. }
  338. if (x.is_negative_zero()) {
  339. if (y.is_positive_zero())
  340. return Value(M_PI);
  341. else if (y.is_negative_zero())
  342. return Value(-M_PI);
  343. else
  344. return (y.as_double() > 0) ? Value(M_PI_2) : Value(-M_PI_2);
  345. }
  346. if (x.is_positive_infinity()) {
  347. if (y.is_infinity())
  348. return (y.is_positive_infinity()) ? Value(pi_4) : Value(-pi_4);
  349. else
  350. return (y.as_double() > 0) ? Value(+0.0) : Value(-0.0);
  351. }
  352. if (x.is_negative_infinity()) {
  353. if (y.is_infinity())
  354. return (y.is_positive_infinity()) ? Value(three_pi_4) : Value(-three_pi_4);
  355. else
  356. return (y.as_double() > 0) ? Value(M_PI) : Value(-M_PI);
  357. }
  358. if (y.is_infinity())
  359. return (y.is_positive_infinity()) ? Value(M_PI_2) : Value(-M_PI_2);
  360. if (y.is_positive_zero())
  361. return (x.as_double() > 0) ? Value(+0.0) : Value(M_PI);
  362. if (y.is_negative_zero())
  363. return (x.as_double() > 0) ? Value(-0.0) : Value(-M_PI);
  364. return Value(::atan2(y.as_double(), x.as_double()));
  365. }
  366. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  367. {
  368. auto number = vm.argument(0).to_number(global_object);
  369. if (vm.exception())
  370. return {};
  371. if (number.is_nan())
  372. return js_nan();
  373. return Value((float)number.as_double());
  374. }
  375. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  376. {
  377. if (!vm.argument_count())
  378. return Value(0);
  379. auto hypot = vm.argument(0).to_number(global_object);
  380. if (vm.exception())
  381. return {};
  382. hypot = Value(hypot.as_double() * hypot.as_double());
  383. for (size_t i = 1; i < vm.argument_count(); ++i) {
  384. auto cur = vm.argument(i).to_number(global_object);
  385. if (vm.exception())
  386. return {};
  387. hypot = Value(hypot.as_double() + cur.as_double() * cur.as_double());
  388. }
  389. return Value(::sqrt(hypot.as_double()));
  390. }
  391. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  392. {
  393. auto number = vm.argument(0).to_number(global_object);
  394. if (vm.exception())
  395. return {};
  396. if (number.as_double() < 0)
  397. return js_nan();
  398. return Value(::log(number.as_double()));
  399. }
  400. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  401. {
  402. auto number = vm.argument(0).to_number(global_object);
  403. if (vm.exception())
  404. return {};
  405. if (number.as_double() < 0)
  406. return js_nan();
  407. return Value(::log2(number.as_double()));
  408. }
  409. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  410. {
  411. auto number = vm.argument(0).to_number(global_object);
  412. if (vm.exception())
  413. return {};
  414. if (number.as_double() < 0)
  415. return js_nan();
  416. return Value(::log10(number.as_double()));
  417. }
  418. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  419. {
  420. auto number = vm.argument(0).to_number(global_object);
  421. if (vm.exception())
  422. return {};
  423. if (number.is_nan())
  424. return js_nan();
  425. return Value(::sinh(number.as_double()));
  426. }
  427. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  428. {
  429. auto number = vm.argument(0).to_number(global_object);
  430. if (vm.exception())
  431. return {};
  432. if (number.is_nan())
  433. return js_nan();
  434. return Value(::cosh(number.as_double()));
  435. }
  436. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  437. {
  438. auto number = vm.argument(0).to_number(global_object);
  439. if (vm.exception())
  440. return {};
  441. if (number.is_nan())
  442. return js_nan();
  443. if (number.is_positive_infinity())
  444. return Value(1);
  445. if (number.is_negative_infinity())
  446. return Value(-1);
  447. return Value(::tanh(number.as_double()));
  448. }
  449. }