MathObject.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
  4. * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
  5. *
  6. * SPDX-License-Identifier: BSD-2-Clause
  7. */
  8. #include <AK/BuiltinWrappers.h>
  9. #include <AK/Function.h>
  10. #include <AK/Random.h>
  11. #include <LibJS/Runtime/GlobalObject.h>
  12. #include <LibJS/Runtime/MathObject.h>
  13. #include <math.h>
  14. namespace JS {
  15. MathObject::MathObject(GlobalObject& global_object)
  16. : Object(*global_object.object_prototype())
  17. {
  18. }
  19. void MathObject::initialize(GlobalObject& global_object)
  20. {
  21. auto& vm = this->vm();
  22. Object::initialize(global_object);
  23. u8 attr = Attribute::Writable | Attribute::Configurable;
  24. define_native_function(vm.names.abs, abs, 1, attr);
  25. define_native_function(vm.names.random, random, 0, attr);
  26. define_native_function(vm.names.sqrt, sqrt, 1, attr);
  27. define_native_function(vm.names.floor, floor, 1, attr);
  28. define_native_function(vm.names.ceil, ceil, 1, attr);
  29. define_native_function(vm.names.round, round, 1, attr);
  30. define_native_function(vm.names.max, max, 2, attr);
  31. define_native_function(vm.names.min, min, 2, attr);
  32. define_native_function(vm.names.trunc, trunc, 1, attr);
  33. define_native_function(vm.names.sin, sin, 1, attr);
  34. define_native_function(vm.names.cos, cos, 1, attr);
  35. define_native_function(vm.names.tan, tan, 1, attr);
  36. define_native_function(vm.names.pow, pow, 2, attr);
  37. define_native_function(vm.names.exp, exp, 1, attr);
  38. define_native_function(vm.names.expm1, expm1, 1, attr);
  39. define_native_function(vm.names.sign, sign, 1, attr);
  40. define_native_function(vm.names.clz32, clz32, 1, attr);
  41. define_native_function(vm.names.acos, acos, 1, attr);
  42. define_native_function(vm.names.acosh, acosh, 1, attr);
  43. define_native_function(vm.names.asin, asin, 1, attr);
  44. define_native_function(vm.names.asinh, asinh, 1, attr);
  45. define_native_function(vm.names.atan, atan, 1, attr);
  46. define_native_function(vm.names.atanh, atanh, 1, attr);
  47. define_native_function(vm.names.log1p, log1p, 1, attr);
  48. define_native_function(vm.names.cbrt, cbrt, 1, attr);
  49. define_native_function(vm.names.atan2, atan2, 2, attr);
  50. define_native_function(vm.names.fround, fround, 1, attr);
  51. define_native_function(vm.names.hypot, hypot, 2, attr);
  52. define_native_function(vm.names.imul, imul, 2, attr);
  53. define_native_function(vm.names.log, log, 1, attr);
  54. define_native_function(vm.names.log2, log2, 1, attr);
  55. define_native_function(vm.names.log10, log10, 1, attr);
  56. define_native_function(vm.names.sinh, sinh, 1, attr);
  57. define_native_function(vm.names.cosh, cosh, 1, attr);
  58. define_native_function(vm.names.tanh, tanh, 1, attr);
  59. // 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
  60. define_direct_property(vm.names.E, Value(M_E), 0);
  61. define_direct_property(vm.names.LN2, Value(M_LN2), 0);
  62. define_direct_property(vm.names.LN10, Value(M_LN10), 0);
  63. define_direct_property(vm.names.LOG2E, Value(::log2(M_E)), 0);
  64. define_direct_property(vm.names.LOG10E, Value(::log10(M_E)), 0);
  65. define_direct_property(vm.names.PI, Value(M_PI), 0);
  66. define_direct_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
  67. define_direct_property(vm.names.SQRT2, Value(M_SQRT2), 0);
  68. // 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
  69. define_direct_property(*vm.well_known_symbol_to_string_tag(), js_string(vm, vm.names.Math.as_string()), Attribute::Configurable);
  70. }
  71. MathObject::~MathObject()
  72. {
  73. }
  74. // 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
  75. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  76. {
  77. auto number = TRY(vm.argument(0).to_number(global_object));
  78. if (number.is_nan())
  79. return js_nan();
  80. if (number.is_negative_zero())
  81. return Value(0);
  82. if (number.is_negative_infinity())
  83. return js_infinity();
  84. return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
  85. }
  86. // 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
  87. JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
  88. {
  89. double r = (double)get_random<u32>() / (double)UINT32_MAX;
  90. return Value(r);
  91. }
  92. // 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
  93. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  94. {
  95. auto number = TRY(vm.argument(0).to_number(global_object));
  96. if (number.is_nan())
  97. return js_nan();
  98. return Value(::sqrt(number.as_double()));
  99. }
  100. // 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
  101. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  102. {
  103. auto number = TRY(vm.argument(0).to_number(global_object));
  104. if (number.is_nan())
  105. return js_nan();
  106. return Value(::floor(number.as_double()));
  107. }
  108. // 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
  109. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  110. {
  111. auto number = TRY(vm.argument(0).to_number(global_object));
  112. if (number.is_nan())
  113. return js_nan();
  114. auto number_double = number.as_double();
  115. if (number_double < 0 && number_double > -1)
  116. return Value(-0.f);
  117. return Value(::ceil(number.as_double()));
  118. }
  119. // 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
  120. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  121. {
  122. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  123. double integer = ::ceil(value);
  124. if (integer - 0.5 > value)
  125. integer--;
  126. return Value(integer);
  127. }
  128. // 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
  129. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  130. {
  131. Vector<Value> coerced;
  132. for (size_t i = 0; i < vm.argument_count(); ++i)
  133. coerced.append(TRY(vm.argument(i).to_number(global_object)));
  134. auto highest = js_negative_infinity();
  135. for (auto& number : coerced) {
  136. if (number.is_nan())
  137. return js_nan();
  138. if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
  139. highest = number;
  140. }
  141. return highest;
  142. }
  143. // 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
  144. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  145. {
  146. Vector<Value> coerced;
  147. for (size_t i = 0; i < vm.argument_count(); ++i)
  148. coerced.append(TRY(vm.argument(i).to_number(global_object)));
  149. auto lowest = js_infinity();
  150. for (auto& number : coerced) {
  151. if (number.is_nan())
  152. return js_nan();
  153. if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
  154. lowest = number;
  155. }
  156. return lowest;
  157. }
  158. // 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
  159. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  160. {
  161. auto number = TRY(vm.argument(0).to_number(global_object));
  162. if (number.is_nan())
  163. return js_nan();
  164. if (number.as_double() < 0)
  165. return MathObject::ceil(vm, global_object);
  166. return MathObject::floor(vm, global_object);
  167. }
  168. // 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
  169. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  170. {
  171. auto number = TRY(vm.argument(0).to_number(global_object));
  172. if (number.is_nan())
  173. return js_nan();
  174. return Value(::sin(number.as_double()));
  175. }
  176. // 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
  177. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  178. {
  179. auto number = TRY(vm.argument(0).to_number(global_object));
  180. if (number.is_nan())
  181. return js_nan();
  182. return Value(::cos(number.as_double()));
  183. }
  184. // 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
  185. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  186. {
  187. auto number = TRY(vm.argument(0).to_number(global_object));
  188. if (number.is_nan())
  189. return js_nan();
  190. return Value(::tan(number.as_double()));
  191. }
  192. // 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
  193. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  194. {
  195. auto base = TRY(vm.argument(0).to_number(global_object));
  196. auto exponent = TRY(vm.argument(1).to_number(global_object));
  197. if (exponent.is_nan())
  198. return js_nan();
  199. if (exponent.is_positive_zero() || exponent.is_negative_zero())
  200. return Value(1);
  201. if (base.is_nan())
  202. return js_nan();
  203. if (base.is_positive_infinity())
  204. return exponent.as_double() > 0 ? js_infinity() : Value(0);
  205. if (base.is_negative_infinity()) {
  206. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  207. if (exponent.as_double() > 0)
  208. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  209. else
  210. return is_odd_integral_number ? Value(-0.0) : Value(0);
  211. }
  212. if (base.is_positive_zero())
  213. return exponent.as_double() > 0 ? Value(0) : js_infinity();
  214. if (base.is_negative_zero()) {
  215. auto is_odd_integral_number = exponent.is_integral_number() && (exponent.as_i32() % 2 != 0);
  216. if (exponent.as_double() > 0)
  217. return is_odd_integral_number ? Value(-0.0) : Value(0);
  218. else
  219. return is_odd_integral_number ? js_negative_infinity() : js_infinity();
  220. }
  221. VERIFY(base.is_finite_number() && !base.is_positive_zero() && !base.is_negative_zero());
  222. if (exponent.is_positive_infinity()) {
  223. auto absolute_base = fabs(base.as_double());
  224. if (absolute_base > 1)
  225. return js_infinity();
  226. else if (absolute_base == 1)
  227. return js_nan();
  228. else if (absolute_base < 1)
  229. return Value(0);
  230. }
  231. if (exponent.is_negative_infinity()) {
  232. auto absolute_base = fabs(base.as_double());
  233. if (absolute_base > 1)
  234. return Value(0);
  235. else if (absolute_base == 1)
  236. return js_nan();
  237. else if (absolute_base < 1)
  238. return js_infinity();
  239. }
  240. VERIFY(exponent.is_finite_number() && !exponent.is_positive_zero() && !exponent.is_negative_zero());
  241. if (base.as_double() < 0 && !exponent.is_integral_number())
  242. return js_nan();
  243. return Value(::pow(base.as_double(), exponent.as_double()));
  244. }
  245. // 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
  246. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  247. {
  248. auto number = TRY(vm.argument(0).to_number(global_object));
  249. if (number.is_nan())
  250. return js_nan();
  251. return Value(::exp(number.as_double()));
  252. }
  253. // 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
  254. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  255. {
  256. auto number = TRY(vm.argument(0).to_number(global_object));
  257. if (number.is_nan())
  258. return js_nan();
  259. return Value(::expm1(number.as_double()));
  260. }
  261. // 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
  262. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  263. {
  264. auto number = TRY(vm.argument(0).to_number(global_object));
  265. if (number.is_positive_zero())
  266. return Value(0);
  267. if (number.is_negative_zero())
  268. return Value(-0.0);
  269. if (number.as_double() > 0)
  270. return Value(1);
  271. if (number.as_double() < 0)
  272. return Value(-1);
  273. return js_nan();
  274. }
  275. // 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
  276. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  277. {
  278. auto number = TRY(vm.argument(0).to_u32(global_object));
  279. if (number == 0)
  280. return Value(32);
  281. return Value(count_leading_zeroes(number));
  282. }
  283. // 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
  284. JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
  285. {
  286. auto number = TRY(vm.argument(0).to_number(global_object));
  287. if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
  288. return js_nan();
  289. if (number.as_double() == 1)
  290. return Value(0);
  291. return Value(::acos(number.as_double()));
  292. }
  293. // 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
  294. JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
  295. {
  296. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  297. if (value < 1)
  298. return js_nan();
  299. return Value(::acosh(value));
  300. }
  301. // 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
  302. JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
  303. {
  304. auto number = TRY(vm.argument(0).to_number(global_object));
  305. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  306. return number;
  307. return Value(::asin(number.as_double()));
  308. }
  309. // 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
  310. JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
  311. {
  312. return Value(::asinh(TRY(vm.argument(0).to_number(global_object)).as_double()));
  313. }
  314. // 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
  315. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
  316. {
  317. auto number = TRY(vm.argument(0).to_number(global_object));
  318. if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
  319. return number;
  320. if (number.is_positive_infinity())
  321. return Value(M_PI_2);
  322. if (number.is_negative_infinity())
  323. return Value(-M_PI_2);
  324. return Value(::atan(number.as_double()));
  325. }
  326. // 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
  327. JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
  328. {
  329. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  330. if (value > 1 || value < -1)
  331. return js_nan();
  332. return Value(::atanh(value));
  333. }
  334. // 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
  335. JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
  336. {
  337. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  338. if (value < -1)
  339. return js_nan();
  340. return Value(::log1p(value));
  341. }
  342. // 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
  343. JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
  344. {
  345. return Value(::cbrt(TRY(vm.argument(0).to_number(global_object)).as_double()));
  346. }
  347. // 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
  348. JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
  349. {
  350. auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
  351. auto y = TRY(vm.argument(0).to_number(global_object));
  352. auto x = TRY(vm.argument(1).to_number(global_object));
  353. if (y.is_nan() || x.is_nan())
  354. return js_nan();
  355. if (y.is_positive_infinity()) {
  356. if (x.is_positive_infinity())
  357. return Value(M_PI_4);
  358. else if (x.is_negative_infinity())
  359. return Value(three_quarters_pi);
  360. else
  361. return Value(M_PI_2);
  362. }
  363. if (y.is_negative_infinity()) {
  364. if (x.is_positive_infinity())
  365. return Value(-M_PI_4);
  366. else if (x.is_negative_infinity())
  367. return Value(-three_quarters_pi);
  368. else
  369. return Value(-M_PI_2);
  370. }
  371. if (y.is_positive_zero()) {
  372. if (x.as_double() > 0 || x.is_positive_zero())
  373. return Value(0.0);
  374. else
  375. return Value(M_PI);
  376. }
  377. if (y.is_negative_zero()) {
  378. if (x.as_double() > 0 || x.is_positive_zero())
  379. return Value(-0.0);
  380. else
  381. return Value(-M_PI);
  382. }
  383. VERIFY(y.is_finite_number() && !y.is_positive_zero() && !y.is_negative_zero());
  384. if (y.as_double() > 0) {
  385. if (x.is_positive_infinity())
  386. return Value(0);
  387. else if (x.is_negative_infinity())
  388. return Value(M_PI);
  389. else if (x.is_positive_zero() || x.is_negative_zero())
  390. return Value(M_PI_2);
  391. }
  392. if (y.as_double() < 0) {
  393. if (x.is_positive_infinity())
  394. return Value(-0.0);
  395. else if (x.is_negative_infinity())
  396. return Value(-M_PI);
  397. else if (x.is_positive_zero() || x.is_negative_zero())
  398. return Value(-M_PI_2);
  399. }
  400. VERIFY(x.is_finite_number() && !x.is_positive_zero() && !x.is_negative_zero());
  401. return Value(::atan2(y.as_double(), x.as_double()));
  402. }
  403. // 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
  404. JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
  405. {
  406. auto number = TRY(vm.argument(0).to_number(global_object));
  407. if (number.is_nan())
  408. return js_nan();
  409. return Value((float)number.as_double());
  410. }
  411. // 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
  412. JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
  413. {
  414. Vector<Value> coerced;
  415. for (size_t i = 0; i < vm.argument_count(); ++i)
  416. coerced.append(TRY(vm.argument(i).to_number(global_object)));
  417. for (auto& number : coerced) {
  418. if (number.is_positive_infinity() || number.is_negative_infinity())
  419. return js_infinity();
  420. }
  421. auto only_zero = true;
  422. double sum_of_squares = 0;
  423. for (auto& number : coerced) {
  424. if (number.is_nan() || number.is_positive_infinity())
  425. return number;
  426. if (number.is_negative_infinity())
  427. return js_infinity();
  428. if (!number.is_positive_zero() && !number.is_negative_zero())
  429. only_zero = false;
  430. sum_of_squares += number.as_double() * number.as_double();
  431. }
  432. if (only_zero)
  433. return Value(0);
  434. return Value(::sqrt(sum_of_squares));
  435. }
  436. // 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
  437. JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
  438. {
  439. auto a = TRY(vm.argument(0).to_u32(global_object));
  440. auto b = TRY(vm.argument(1).to_u32(global_object));
  441. return Value(static_cast<i32>(a * b));
  442. }
  443. // 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
  444. JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
  445. {
  446. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  447. if (value < 0)
  448. return js_nan();
  449. return Value(::log(value));
  450. }
  451. // 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
  452. JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
  453. {
  454. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  455. if (value < 0)
  456. return js_nan();
  457. return Value(::log2(value));
  458. }
  459. // 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
  460. JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
  461. {
  462. auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
  463. if (value < 0)
  464. return js_nan();
  465. return Value(::log10(value));
  466. }
  467. // 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
  468. JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
  469. {
  470. auto number = TRY(vm.argument(0).to_number(global_object));
  471. if (number.is_nan())
  472. return js_nan();
  473. return Value(::sinh(number.as_double()));
  474. }
  475. // 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
  476. JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
  477. {
  478. auto number = TRY(vm.argument(0).to_number(global_object));
  479. if (number.is_nan())
  480. return js_nan();
  481. return Value(::cosh(number.as_double()));
  482. }
  483. // 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
  484. JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
  485. {
  486. auto number = TRY(vm.argument(0).to_number(global_object));
  487. if (number.is_nan())
  488. return js_nan();
  489. if (number.is_positive_infinity())
  490. return Value(1);
  491. if (number.is_negative_infinity())
  492. return Value(-1);
  493. return Value(::tanh(number.as_double()));
  494. }
  495. }