Region.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/FileSystem/Inode.h>
  10. #include <Kernel/Memory/AnonymousVMObject.h>
  11. #include <Kernel/Memory/MemoryManager.h>
  12. #include <Kernel/Memory/PageDirectory.h>
  13. #include <Kernel/Memory/Region.h>
  14. #include <Kernel/Memory/SharedInodeVMObject.h>
  15. #include <Kernel/Panic.h>
  16. #include <Kernel/Process.h>
  17. #include <Kernel/Thread.h>
  18. namespace Kernel::Memory {
  19. Region::Region(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  20. : m_range(range)
  21. , m_offset_in_vmobject(offset_in_vmobject)
  22. , m_vmobject(move(vmobject))
  23. , m_name(move(name))
  24. , m_access(access | ((access & 0x7) << 4))
  25. , m_shared(shared)
  26. , m_cacheable(cacheable == Cacheable::Yes)
  27. {
  28. VERIFY(m_range.base().is_page_aligned());
  29. VERIFY(m_range.size());
  30. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  31. m_vmobject->add_region(*this);
  32. MM.register_region(*this);
  33. }
  34. Region::~Region()
  35. {
  36. m_vmobject->remove_region(*this);
  37. MM.unregister_region(*this);
  38. if (m_page_directory) {
  39. ScopedSpinLock page_lock(m_page_directory->get_lock());
  40. ScopedSpinLock lock(s_mm_lock);
  41. unmap(ShouldDeallocateVirtualRange::Yes);
  42. VERIFY(!m_page_directory);
  43. }
  44. }
  45. OwnPtr<Region> Region::clone()
  46. {
  47. VERIFY(Process::current());
  48. ScopedSpinLock lock(s_mm_lock);
  49. if (m_shared) {
  50. VERIFY(!m_stack);
  51. if (vmobject().is_inode())
  52. VERIFY(vmobject().is_shared_inode());
  53. // Create a new region backed by the same VMObject.
  54. auto region = Region::try_create_user_accessible(
  55. m_range, m_vmobject, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  56. if (!region) {
  57. dbgln("Region::clone: Unable to allocate new Region");
  58. return nullptr;
  59. }
  60. region->set_mmap(m_mmap);
  61. region->set_shared(m_shared);
  62. region->set_syscall_region(is_syscall_region());
  63. return region;
  64. }
  65. if (vmobject().is_inode())
  66. VERIFY(vmobject().is_private_inode());
  67. auto vmobject_clone = vmobject().try_clone();
  68. if (!vmobject_clone)
  69. return {};
  70. // Set up a COW region. The parent (this) region becomes COW as well!
  71. remap();
  72. auto clone_region = Region::try_create_user_accessible(
  73. m_range, vmobject_clone.release_nonnull(), m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  74. if (!clone_region) {
  75. dbgln("Region::clone: Unable to allocate new Region for COW");
  76. return nullptr;
  77. }
  78. if (m_stack) {
  79. VERIFY(is_readable());
  80. VERIFY(is_writable());
  81. VERIFY(vmobject().is_anonymous());
  82. clone_region->set_stack(true);
  83. }
  84. clone_region->set_syscall_region(is_syscall_region());
  85. clone_region->set_mmap(m_mmap);
  86. return clone_region;
  87. }
  88. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  89. {
  90. if (m_vmobject.ptr() == obj.ptr())
  91. return;
  92. m_vmobject->remove_region(*this);
  93. m_vmobject = move(obj);
  94. m_vmobject->add_region(*this);
  95. }
  96. size_t Region::cow_pages() const
  97. {
  98. if (!vmobject().is_anonymous())
  99. return 0;
  100. return static_cast<AnonymousVMObject const&>(vmobject()).cow_pages();
  101. }
  102. size_t Region::amount_dirty() const
  103. {
  104. if (!vmobject().is_inode())
  105. return amount_resident();
  106. return static_cast<InodeVMObject const&>(vmobject()).amount_dirty();
  107. }
  108. size_t Region::amount_resident() const
  109. {
  110. size_t bytes = 0;
  111. for (size_t i = 0; i < page_count(); ++i) {
  112. auto* page = physical_page(i);
  113. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  114. bytes += PAGE_SIZE;
  115. }
  116. return bytes;
  117. }
  118. size_t Region::amount_shared() const
  119. {
  120. size_t bytes = 0;
  121. for (size_t i = 0; i < page_count(); ++i) {
  122. auto* page = physical_page(i);
  123. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  124. bytes += PAGE_SIZE;
  125. }
  126. return bytes;
  127. }
  128. OwnPtr<Region> Region::try_create_user_accessible(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  129. {
  130. auto region = adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  131. if (!region)
  132. return nullptr;
  133. return region;
  134. }
  135. OwnPtr<Region> Region::try_create_kernel_only(VirtualRange const& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  136. {
  137. return adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  138. }
  139. bool Region::should_cow(size_t page_index) const
  140. {
  141. if (!vmobject().is_anonymous())
  142. return false;
  143. return static_cast<AnonymousVMObject const&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  144. }
  145. void Region::set_should_cow(size_t page_index, bool cow)
  146. {
  147. VERIFY(!m_shared);
  148. if (vmobject().is_anonymous())
  149. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  150. }
  151. bool Region::map_individual_page_impl(size_t page_index)
  152. {
  153. VERIFY(m_page_directory->get_lock().own_lock());
  154. auto page_vaddr = vaddr_from_page_index(page_index);
  155. bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
  156. if (is_mmap() && !user_allowed) {
  157. PANIC("About to map mmap'ed page at a kernel address");
  158. }
  159. // NOTE: We have to take the MM lock for PTE's to stay valid while we use them.
  160. ScopedSpinLock mm_locker(s_mm_lock);
  161. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  162. if (!pte)
  163. return false;
  164. auto* page = physical_page(page_index);
  165. if (!page || (!is_readable() && !is_writable())) {
  166. pte->clear();
  167. } else {
  168. pte->set_cache_disabled(!m_cacheable);
  169. pte->set_physical_page_base(page->paddr().get());
  170. pte->set_present(true);
  171. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  172. pte->set_writable(false);
  173. else
  174. pte->set_writable(is_writable());
  175. if (Processor::current().has_feature(CPUFeature::NX))
  176. pte->set_execute_disabled(!is_executable());
  177. pte->set_user_allowed(user_allowed);
  178. }
  179. return true;
  180. }
  181. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  182. {
  183. ScopedSpinLock lock(vmobject().m_lock);
  184. if (!m_page_directory)
  185. return true; // not an error, region may have not yet mapped it
  186. if (!translate_vmobject_page(page_index))
  187. return true; // not an error, region doesn't map this page
  188. ScopedSpinLock page_lock(m_page_directory->get_lock());
  189. VERIFY(physical_page(page_index));
  190. bool success = map_individual_page_impl(page_index);
  191. if (with_flush)
  192. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  193. return success;
  194. }
  195. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  196. {
  197. auto& vmobject = this->vmobject();
  198. bool success = true;
  199. vmobject.for_each_region([&](auto& region) {
  200. if (!region.do_remap_vmobject_page(page_index, with_flush))
  201. success = false;
  202. });
  203. return success;
  204. }
  205. void Region::unmap(ShouldDeallocateVirtualRange deallocate_range)
  206. {
  207. if (!m_page_directory)
  208. return;
  209. ScopedSpinLock page_lock(m_page_directory->get_lock());
  210. ScopedSpinLock lock(s_mm_lock);
  211. size_t count = page_count();
  212. for (size_t i = 0; i < count; ++i) {
  213. auto vaddr = vaddr_from_page_index(i);
  214. MM.release_pte(*m_page_directory, vaddr, i == count - 1);
  215. }
  216. MM.flush_tlb(m_page_directory, vaddr(), page_count());
  217. if (deallocate_range == ShouldDeallocateVirtualRange::Yes) {
  218. m_page_directory->range_allocator().deallocate(range());
  219. }
  220. m_page_directory = nullptr;
  221. }
  222. void Region::set_page_directory(PageDirectory& page_directory)
  223. {
  224. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  225. VERIFY(s_mm_lock.own_lock());
  226. m_page_directory = page_directory;
  227. }
  228. bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  229. {
  230. ScopedSpinLock page_lock(page_directory.get_lock());
  231. ScopedSpinLock lock(s_mm_lock);
  232. // FIXME: Find a better place for this sanity check(?)
  233. if (is_user() && !is_shared()) {
  234. VERIFY(!vmobject().is_shared_inode());
  235. }
  236. set_page_directory(page_directory);
  237. size_t page_index = 0;
  238. while (page_index < page_count()) {
  239. if (!map_individual_page_impl(page_index))
  240. break;
  241. ++page_index;
  242. }
  243. if (page_index > 0) {
  244. if (should_flush_tlb == ShouldFlushTLB::Yes)
  245. MM.flush_tlb(m_page_directory, vaddr(), page_index);
  246. return page_index == page_count();
  247. }
  248. return false;
  249. }
  250. void Region::remap()
  251. {
  252. VERIFY(m_page_directory);
  253. map(*m_page_directory);
  254. }
  255. PageFaultResponse Region::handle_fault(PageFault const& fault)
  256. {
  257. auto page_index_in_region = page_index_from_address(fault.vaddr());
  258. if (fault.type() == PageFault::Type::PageNotPresent) {
  259. if (fault.is_read() && !is_readable()) {
  260. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  261. return PageFaultResponse::ShouldCrash;
  262. }
  263. if (fault.is_write() && !is_writable()) {
  264. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  265. return PageFaultResponse::ShouldCrash;
  266. }
  267. if (vmobject().is_inode()) {
  268. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  269. return handle_inode_fault(page_index_in_region);
  270. }
  271. auto& page_slot = physical_page_slot(page_index_in_region);
  272. if (page_slot->is_lazy_committed_page()) {
  273. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  274. VERIFY(m_vmobject->is_anonymous());
  275. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  276. remap_vmobject_page(page_index_in_vmobject);
  277. return PageFaultResponse::Continue;
  278. }
  279. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  280. return PageFaultResponse::ShouldCrash;
  281. }
  282. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  283. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  284. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  285. auto* phys_page = physical_page(page_index_in_region);
  286. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  287. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  288. return handle_zero_fault(page_index_in_region);
  289. }
  290. return handle_cow_fault(page_index_in_region);
  291. }
  292. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  293. return PageFaultResponse::ShouldCrash;
  294. }
  295. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
  296. {
  297. VERIFY_INTERRUPTS_DISABLED();
  298. VERIFY(vmobject().is_anonymous());
  299. auto& page_slot = physical_page_slot(page_index_in_region);
  300. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  301. ScopedSpinLock locker(vmobject().m_lock);
  302. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  303. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  304. if (!remap_vmobject_page(page_index_in_vmobject))
  305. return PageFaultResponse::OutOfMemory;
  306. return PageFaultResponse::Continue;
  307. }
  308. auto current_thread = Thread::current();
  309. if (current_thread != nullptr)
  310. current_thread->did_zero_fault();
  311. if (page_slot->is_lazy_committed_page()) {
  312. VERIFY(m_vmobject->is_anonymous());
  313. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({});
  314. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  315. } else {
  316. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  317. if (page_slot.is_null()) {
  318. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  319. return PageFaultResponse::OutOfMemory;
  320. }
  321. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  322. }
  323. if (!remap_vmobject_page(page_index_in_vmobject)) {
  324. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  325. return PageFaultResponse::OutOfMemory;
  326. }
  327. return PageFaultResponse::Continue;
  328. }
  329. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  330. {
  331. VERIFY_INTERRUPTS_DISABLED();
  332. auto current_thread = Thread::current();
  333. if (current_thread)
  334. current_thread->did_cow_fault();
  335. if (!vmobject().is_anonymous())
  336. return PageFaultResponse::ShouldCrash;
  337. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  338. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  339. if (!remap_vmobject_page(page_index_in_vmobject))
  340. return PageFaultResponse::OutOfMemory;
  341. return response;
  342. }
  343. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
  344. {
  345. VERIFY_INTERRUPTS_DISABLED();
  346. VERIFY(vmobject().is_inode());
  347. VERIFY(!s_mm_lock.own_lock());
  348. VERIFY(!g_scheduler_lock.own_lock());
  349. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  350. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  351. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  352. {
  353. ScopedSpinLock locker(inode_vmobject.m_lock);
  354. if (!vmobject_physical_page_entry.is_null()) {
  355. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else before reading, remapping.");
  356. if (!remap_vmobject_page(page_index_in_vmobject))
  357. return PageFaultResponse::OutOfMemory;
  358. return PageFaultResponse::Continue;
  359. }
  360. }
  361. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  362. auto current_thread = Thread::current();
  363. if (current_thread)
  364. current_thread->did_inode_fault();
  365. u8 page_buffer[PAGE_SIZE];
  366. auto& inode = inode_vmobject.inode();
  367. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  368. auto result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  369. if (result.is_error()) {
  370. dmesgln("handle_inode_fault: Error ({}) while reading from inode", result.error());
  371. return PageFaultResponse::ShouldCrash;
  372. }
  373. auto nread = result.value();
  374. if (nread < PAGE_SIZE) {
  375. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  376. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  377. }
  378. ScopedSpinLock locker(inode_vmobject.m_lock);
  379. if (!vmobject_physical_page_entry.is_null()) {
  380. // Someone else faulted in this page while we were reading from the inode.
  381. // No harm done (other than some duplicate work), remap the page here and return.
  382. dbgln_if(PAGE_FAULT_DEBUG, "handle_inode_fault: Page faulted in by someone else, remapping.");
  383. if (!remap_vmobject_page(page_index_in_vmobject))
  384. return PageFaultResponse::OutOfMemory;
  385. return PageFaultResponse::Continue;
  386. }
  387. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  388. if (vmobject_physical_page_entry.is_null()) {
  389. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  390. return PageFaultResponse::OutOfMemory;
  391. }
  392. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  393. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  394. MM.unquickmap_page();
  395. remap_vmobject_page(page_index_in_vmobject);
  396. return PageFaultResponse::Continue;
  397. }
  398. }