Process.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Singleton.h>
  7. #include <AK/StdLibExtras.h>
  8. #include <AK/StringBuilder.h>
  9. #include <AK/Time.h>
  10. #include <AK/Types.h>
  11. #include <Kernel/API/Syscall.h>
  12. #include <Kernel/Arch/x86/InterruptDisabler.h>
  13. #include <Kernel/CoreDump.h>
  14. #include <Kernel/Debug.h>
  15. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  16. # include <Kernel/Devices/KCOVDevice.h>
  17. #endif
  18. #include <Kernel/Devices/NullDevice.h>
  19. #include <Kernel/FileSystem/Custody.h>
  20. #include <Kernel/FileSystem/FileDescription.h>
  21. #include <Kernel/FileSystem/VirtualFileSystem.h>
  22. #include <Kernel/KBufferBuilder.h>
  23. #include <Kernel/KSyms.h>
  24. #include <Kernel/Memory/AnonymousVMObject.h>
  25. #include <Kernel/Memory/PageDirectory.h>
  26. #include <Kernel/Memory/SharedInodeVMObject.h>
  27. #include <Kernel/Module.h>
  28. #include <Kernel/PerformanceEventBuffer.h>
  29. #include <Kernel/PerformanceManager.h>
  30. #include <Kernel/Process.h>
  31. #include <Kernel/ProcessExposed.h>
  32. #include <Kernel/RTC.h>
  33. #include <Kernel/Sections.h>
  34. #include <Kernel/StdLib.h>
  35. #include <Kernel/TTY/TTY.h>
  36. #include <Kernel/Thread.h>
  37. #include <Kernel/ThreadTracer.h>
  38. #include <LibC/errno_numbers.h>
  39. #include <LibC/limits.h>
  40. namespace Kernel {
  41. static void create_signal_trampoline();
  42. RecursiveSpinLock g_profiling_lock;
  43. static Atomic<pid_t> next_pid;
  44. static AK::Singleton<ProtectedValue<Process::List>> s_processes;
  45. READONLY_AFTER_INIT HashMap<String, OwnPtr<Module>>* g_modules;
  46. READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region;
  47. static AK::Singleton<ProtectedValue<String>> s_hostname;
  48. ProtectedValue<String>& hostname()
  49. {
  50. return *s_hostname;
  51. }
  52. ProtectedValue<Process::List>& processes()
  53. {
  54. return *s_processes;
  55. }
  56. ProcessID Process::allocate_pid()
  57. {
  58. // Overflow is UB, and negative PIDs wreck havoc.
  59. // TODO: Handle PID overflow
  60. // For example: Use an Atomic<u32>, mask the most significant bit,
  61. // retry if PID is already taken as a PID, taken as a TID,
  62. // takes as a PGID, taken as a SID, or zero.
  63. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
  64. }
  65. UNMAP_AFTER_INIT void Process::initialize()
  66. {
  67. g_modules = new HashMap<String, OwnPtr<Module>>;
  68. next_pid.store(0, AK::MemoryOrder::memory_order_release);
  69. g_process_groups = new ProcessGroup::List();
  70. hostname().with_exclusive([&](auto& name) {
  71. name = "courage";
  72. });
  73. create_signal_trampoline();
  74. }
  75. Vector<ProcessID> Process::all_pids()
  76. {
  77. Vector<ProcessID> pids;
  78. processes().with_shared([&](const auto& list) {
  79. pids.ensure_capacity(list.size_slow());
  80. for (const auto& process : list)
  81. pids.append(process.pid());
  82. });
  83. return pids;
  84. }
  85. NonnullRefPtrVector<Process> Process::all_processes()
  86. {
  87. NonnullRefPtrVector<Process> output;
  88. processes().with_shared([&](const auto& list) {
  89. output.ensure_capacity(list.size_slow());
  90. for (const auto& process : list)
  91. output.append(NonnullRefPtr<Process>(process));
  92. });
  93. return output;
  94. }
  95. bool Process::in_group(gid_t gid) const
  96. {
  97. return this->gid() == gid || extra_gids().contains_slow(gid);
  98. }
  99. void Process::kill_threads_except_self()
  100. {
  101. InterruptDisabler disabler;
  102. if (thread_count() <= 1)
  103. return;
  104. auto current_thread = Thread::current();
  105. for_each_thread([&](Thread& thread) {
  106. if (&thread == current_thread)
  107. return;
  108. if (auto state = thread.state(); state == Thread::State::Dead
  109. || state == Thread::State::Dying)
  110. return;
  111. // We need to detach this thread in case it hasn't been joined
  112. thread.detach();
  113. thread.set_should_die();
  114. });
  115. u32 dropped_lock_count = 0;
  116. if (big_lock().force_unlock_if_locked(dropped_lock_count) != LockMode::Unlocked)
  117. dbgln("Process {} big lock had {} locks", *this, dropped_lock_count);
  118. }
  119. void Process::kill_all_threads()
  120. {
  121. for_each_thread([&](Thread& thread) {
  122. // We need to detach this thread in case it hasn't been joined
  123. thread.detach();
  124. thread.set_should_die();
  125. });
  126. }
  127. void Process::register_new(Process& process)
  128. {
  129. // Note: this is essentially the same like process->ref()
  130. RefPtr<Process> new_process = process;
  131. processes().with_exclusive([&](auto& list) {
  132. list.prepend(process);
  133. });
  134. ProcFSComponentRegistry::the().register_new_process(process);
  135. }
  136. RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
  137. {
  138. auto parts = path.split('/');
  139. if (arguments.is_empty()) {
  140. arguments.append(parts.last());
  141. }
  142. RefPtr<Custody> cwd;
  143. if (auto parent = Process::from_pid(parent_pid))
  144. cwd = parent->m_cwd;
  145. if (!cwd)
  146. cwd = VirtualFileSystem::the().root_custody();
  147. auto process = Process::create(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty);
  148. if (!first_thread)
  149. return {};
  150. if (!process->m_fds.try_resize(process->m_fds.max_open())) {
  151. first_thread = nullptr;
  152. return {};
  153. }
  154. auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
  155. auto description = device_to_use_as_tty.open(O_RDWR).value();
  156. auto setup_description = [&process, &description](int fd) {
  157. process->m_fds.m_fds_metadatas[fd].allocate();
  158. process->m_fds[fd].set(*description);
  159. };
  160. setup_description(0);
  161. setup_description(1);
  162. setup_description(2);
  163. error = process->exec(path, move(arguments), move(environment));
  164. if (error != 0) {
  165. dbgln("Failed to exec {}: {}", path, error);
  166. first_thread = nullptr;
  167. return {};
  168. }
  169. register_new(*process);
  170. error = 0;
  171. // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockCondition::finalize().
  172. (void)process.leak_ref();
  173. return process;
  174. }
  175. RefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register)
  176. {
  177. auto process = Process::create(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true);
  178. if (!first_thread || !process)
  179. return {};
  180. #if ARCH(I386)
  181. first_thread->regs().eip = (FlatPtr)entry;
  182. first_thread->regs().esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.esp
  183. #else
  184. first_thread->regs().rip = (FlatPtr)entry;
  185. first_thread->regs().rdi = FlatPtr(entry_data); // entry function argument is expected to be in regs.rdi
  186. #endif
  187. if (do_register == RegisterProcess::Yes)
  188. register_new(*process);
  189. ScopedSpinLock lock(g_scheduler_lock);
  190. first_thread->set_affinity(affinity);
  191. first_thread->set_state(Thread::State::Runnable);
  192. return process;
  193. }
  194. void Process::protect_data()
  195. {
  196. m_protected_data_refs.unref([&]() {
  197. MM.set_page_writable_direct(VirtualAddress { this }, false);
  198. });
  199. }
  200. void Process::unprotect_data()
  201. {
  202. m_protected_data_refs.ref([&]() {
  203. MM.set_page_writable_direct(VirtualAddress { this }, true);
  204. });
  205. }
  206. RefPtr<Process> Process::create(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
  207. {
  208. auto process = adopt_ref_if_nonnull(new (nothrow) Process(name, uid, gid, ppid, is_kernel_process, move(cwd), move(executable), tty));
  209. if (!process)
  210. return {};
  211. auto result = process->attach_resources(first_thread, fork_parent);
  212. if (result.is_error())
  213. return {};
  214. return process;
  215. }
  216. Process::Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty)
  217. : m_name(move(name))
  218. , m_is_kernel_process(is_kernel_process)
  219. , m_executable(move(executable))
  220. , m_cwd(move(cwd))
  221. , m_tty(tty)
  222. , m_wait_block_condition(*this)
  223. {
  224. // Ensure that we protect the process data when exiting the constructor.
  225. ProtectedDataMutationScope scope { *this };
  226. m_pid = allocate_pid();
  227. m_ppid = ppid;
  228. m_uid = uid;
  229. m_gid = gid;
  230. m_euid = uid;
  231. m_egid = gid;
  232. m_suid = uid;
  233. m_sgid = gid;
  234. dbgln_if(PROCESS_DEBUG, "Created new process {}({})", m_name, this->pid().value());
  235. }
  236. KResult Process::attach_resources(RefPtr<Thread>& first_thread, Process* fork_parent)
  237. {
  238. m_space = Memory::AddressSpace::try_create(*this, fork_parent ? &fork_parent->address_space() : nullptr);
  239. if (!m_space)
  240. return ENOMEM;
  241. if (fork_parent) {
  242. // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
  243. first_thread = Thread::current()->clone(*this);
  244. if (!first_thread)
  245. return ENOMEM;
  246. } else {
  247. // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
  248. auto thread_or_error = Thread::try_create(*this);
  249. if (thread_or_error.is_error())
  250. return thread_or_error.error();
  251. first_thread = thread_or_error.release_value();
  252. first_thread->detach();
  253. }
  254. return KSuccess;
  255. }
  256. Process::~Process()
  257. {
  258. unprotect_data();
  259. VERIFY(thread_count() == 0); // all threads should have been finalized
  260. VERIFY(!m_alarm_timer);
  261. PerformanceManager::add_process_exit_event(*this);
  262. if (m_list_node.is_in_list())
  263. processes().with_exclusive([&](auto& list) {
  264. list.remove(*this);
  265. });
  266. }
  267. // Make sure the compiler doesn't "optimize away" this function:
  268. extern void signal_trampoline_dummy() __attribute__((used));
  269. void signal_trampoline_dummy()
  270. {
  271. #if ARCH(I386)
  272. // The trampoline preserves the current eax, pushes the signal code and
  273. // then calls the signal handler. We do this because, when interrupting a
  274. // blocking syscall, that syscall may return some special error code in eax;
  275. // This error code would likely be overwritten by the signal handler, so it's
  276. // necessary to preserve it here.
  277. asm(
  278. ".intel_syntax noprefix\n"
  279. ".globl asm_signal_trampoline\n"
  280. "asm_signal_trampoline:\n"
  281. "push ebp\n"
  282. "mov ebp, esp\n"
  283. "push eax\n" // we have to store eax 'cause it might be the return value from a syscall
  284. "sub esp, 4\n" // align the stack to 16 bytes
  285. "mov eax, [ebp+12]\n" // push the signal code
  286. "push eax\n"
  287. "call [ebp+8]\n" // call the signal handler
  288. "add esp, 8\n"
  289. "mov eax, %P0\n"
  290. "int 0x82\n" // sigreturn syscall
  291. ".globl asm_signal_trampoline_end\n"
  292. "asm_signal_trampoline_end:\n"
  293. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  294. #elif ARCH(X86_64)
  295. // The trampoline preserves the current rax, pushes the signal code and
  296. // then calls the signal handler. We do this because, when interrupting a
  297. // blocking syscall, that syscall may return some special error code in eax;
  298. // This error code would likely be overwritten by the signal handler, so it's
  299. // necessary to preserve it here.
  300. asm(
  301. ".intel_syntax noprefix\n"
  302. ".globl asm_signal_trampoline\n"
  303. "asm_signal_trampoline:\n"
  304. "push rbp\n"
  305. "mov rbp, rsp\n"
  306. "push rax\n" // we have to store rax 'cause it might be the return value from a syscall
  307. "sub rsp, 8\n" // align the stack to 16 bytes
  308. "mov rdi, [rbp+24]\n" // push the signal code
  309. "call [rbp+16]\n" // call the signal handler
  310. "add rsp, 8\n"
  311. "mov rax, %P0\n"
  312. "int 0x82\n" // sigreturn syscall
  313. ".globl asm_signal_trampoline_end\n"
  314. "asm_signal_trampoline_end:\n"
  315. ".att_syntax" ::"i"(Syscall::SC_sigreturn));
  316. #endif
  317. }
  318. extern "C" char const asm_signal_trampoline[];
  319. extern "C" char const asm_signal_trampoline_end[];
  320. void create_signal_trampoline()
  321. {
  322. // NOTE: We leak this region.
  323. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines", Memory::Region::Access::ReadWrite).leak_ptr();
  324. g_signal_trampoline_region->set_syscall_region(true);
  325. size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline;
  326. u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr();
  327. memcpy(code_ptr, asm_signal_trampoline, trampoline_size);
  328. g_signal_trampoline_region->set_writable(false);
  329. g_signal_trampoline_region->remap();
  330. }
  331. void Process::crash(int signal, FlatPtr ip, bool out_of_memory)
  332. {
  333. VERIFY(!is_dead());
  334. VERIFY(Process::current() == this);
  335. if (out_of_memory) {
  336. dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this);
  337. } else {
  338. if (ip >= kernel_load_base && g_kernel_symbols_available) {
  339. auto* symbol = symbolicate_kernel_address(ip);
  340. dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0));
  341. } else {
  342. dbgln("\033[31;1m{:p} (?)\033[0m\n", ip);
  343. }
  344. dump_backtrace();
  345. }
  346. {
  347. ProtectedDataMutationScope scope { *this };
  348. m_termination_signal = signal;
  349. }
  350. set_dump_core(!out_of_memory);
  351. address_space().dump_regions();
  352. VERIFY(is_user_process());
  353. die();
  354. // We can not return from here, as there is nowhere
  355. // to unwind to, so die right away.
  356. Thread::current()->die_if_needed();
  357. VERIFY_NOT_REACHED();
  358. }
  359. RefPtr<Process> Process::from_pid(ProcessID pid)
  360. {
  361. return processes().with_shared([&](const auto& list) -> RefPtr<Process> {
  362. for (auto& process : list) {
  363. if (process.pid() == pid)
  364. return &process;
  365. }
  366. return {};
  367. });
  368. }
  369. const Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i) const
  370. {
  371. ScopedSpinLock lock(m_fds_lock);
  372. VERIFY(m_fds_metadatas[i].is_allocated());
  373. return m_fds_metadatas[i];
  374. }
  375. Process::FileDescriptionAndFlags& Process::FileDescriptions::at(size_t i)
  376. {
  377. ScopedSpinLock lock(m_fds_lock);
  378. VERIFY(m_fds_metadatas[i].is_allocated());
  379. return m_fds_metadatas[i];
  380. }
  381. RefPtr<FileDescription> Process::FileDescriptions::file_description(int fd) const
  382. {
  383. ScopedSpinLock lock(m_fds_lock);
  384. if (fd < 0)
  385. return nullptr;
  386. if (static_cast<size_t>(fd) < m_fds_metadatas.size())
  387. return m_fds_metadatas[fd].description();
  388. return nullptr;
  389. }
  390. int Process::FileDescriptions::fd_flags(int fd) const
  391. {
  392. ScopedSpinLock lock(m_fds_lock);
  393. if (fd < 0)
  394. return -1;
  395. if (static_cast<size_t>(fd) < m_fds_metadatas.size())
  396. return m_fds_metadatas[fd].flags();
  397. return -1;
  398. }
  399. void Process::FileDescriptions::enumerate(Function<void(const FileDescriptionAndFlags&)> callback) const
  400. {
  401. ScopedSpinLock lock(m_fds_lock);
  402. for (auto& file_description_metadata : m_fds_metadatas) {
  403. callback(file_description_metadata);
  404. }
  405. }
  406. void Process::FileDescriptions::change_each(Function<void(FileDescriptionAndFlags&)> callback)
  407. {
  408. ScopedSpinLock lock(m_fds_lock);
  409. for (auto& file_description_metadata : m_fds_metadatas) {
  410. callback(file_description_metadata);
  411. }
  412. }
  413. size_t Process::FileDescriptions::open_count() const
  414. {
  415. size_t count = 0;
  416. enumerate([&](auto& file_description_metadata) {
  417. if (file_description_metadata.is_valid())
  418. ++count;
  419. });
  420. return count;
  421. }
  422. KResultOr<Process::ScopedDescriptionAllocation> Process::FileDescriptions::allocate(int first_candidate_fd)
  423. {
  424. ScopedSpinLock lock(m_fds_lock);
  425. for (size_t i = first_candidate_fd; i < max_open(); ++i) {
  426. if (!m_fds_metadatas[i].is_allocated()) {
  427. m_fds_metadatas[i].allocate();
  428. return Process::ScopedDescriptionAllocation { static_cast<int>(i), &m_fds_metadatas[i] };
  429. }
  430. }
  431. return EMFILE;
  432. }
  433. Time kgettimeofday()
  434. {
  435. return TimeManagement::now();
  436. }
  437. siginfo_t Process::wait_info()
  438. {
  439. siginfo_t siginfo {};
  440. siginfo.si_signo = SIGCHLD;
  441. siginfo.si_pid = pid().value();
  442. siginfo.si_uid = uid();
  443. if (m_termination_signal) {
  444. siginfo.si_status = m_termination_signal;
  445. siginfo.si_code = CLD_KILLED;
  446. } else {
  447. siginfo.si_status = m_termination_status;
  448. siginfo.si_code = CLD_EXITED;
  449. }
  450. return siginfo;
  451. }
  452. Custody& Process::current_directory()
  453. {
  454. if (!m_cwd)
  455. m_cwd = VirtualFileSystem::the().root_custody();
  456. return *m_cwd;
  457. }
  458. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(char const* user_path, size_t path_length) const
  459. {
  460. if (path_length == 0)
  461. return EINVAL;
  462. if (path_length > PATH_MAX)
  463. return ENAMETOOLONG;
  464. auto string_or_error = try_copy_kstring_from_user(user_path, path_length);
  465. if (string_or_error.is_error())
  466. return string_or_error.error();
  467. return string_or_error.release_value();
  468. }
  469. KResultOr<NonnullOwnPtr<KString>> Process::get_syscall_path_argument(Syscall::StringArgument const& path) const
  470. {
  471. return get_syscall_path_argument(path.characters, path.length);
  472. }
  473. bool Process::dump_core()
  474. {
  475. VERIFY(is_dumpable());
  476. VERIFY(should_core_dump());
  477. dbgln("Generating coredump for pid: {}", pid().value());
  478. auto coredump_path = String::formatted("/tmp/coredump/{}_{}_{}", name(), pid().value(), RTC::now());
  479. auto coredump = CoreDump::create(*this, coredump_path);
  480. if (!coredump)
  481. return false;
  482. return !coredump->write().is_error();
  483. }
  484. bool Process::dump_perfcore()
  485. {
  486. VERIFY(is_dumpable());
  487. VERIFY(m_perf_event_buffer);
  488. dbgln("Generating perfcore for pid: {}", pid().value());
  489. // Try to generate a filename which isn't already used.
  490. auto base_filename = String::formatted("{}_{}", name(), pid().value());
  491. auto description_or_error = VirtualFileSystem::the().open(String::formatted("{}.profile", base_filename), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  492. for (size_t attempt = 1; attempt < 10 && description_or_error.is_error(); ++attempt)
  493. description_or_error = VirtualFileSystem::the().open(String::formatted("{}.{}.profile", base_filename, attempt), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { uid(), gid() });
  494. if (description_or_error.is_error()) {
  495. dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value());
  496. return false;
  497. }
  498. auto& description = *description_or_error.value();
  499. KBufferBuilder builder;
  500. if (!m_perf_event_buffer->to_json(builder)) {
  501. dbgln("Failed to generate perfcore for pid {}: Could not serialize performance events to JSON.", pid().value());
  502. return false;
  503. }
  504. auto json = builder.build();
  505. if (!json) {
  506. dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value());
  507. return false;
  508. }
  509. auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data());
  510. if (description.write(json_buffer, json->size()).is_error()) {
  511. return false;
  512. dbgln("Failed to generate perfcore for pid {}: Cound not write to perfcore file.", pid().value());
  513. }
  514. dbgln("Wrote perfcore for pid {} to {}", pid().value(), description.absolute_path());
  515. return true;
  516. }
  517. void Process::finalize()
  518. {
  519. VERIFY(Thread::current() == g_finalizer);
  520. dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this);
  521. if (is_dumpable()) {
  522. if (m_should_dump_core)
  523. dump_core();
  524. if (m_perf_event_buffer) {
  525. dump_perfcore();
  526. TimeManagement::the().disable_profile_timer();
  527. }
  528. }
  529. m_threads_for_coredump.clear();
  530. if (m_alarm_timer)
  531. TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull());
  532. m_fds.clear();
  533. m_tty = nullptr;
  534. m_executable = nullptr;
  535. m_cwd = nullptr;
  536. m_root_directory = nullptr;
  537. m_root_directory_relative_to_global_root = nullptr;
  538. m_arguments.clear();
  539. m_environment.clear();
  540. // Note: We need to remove the references from the ProcFS registrar
  541. // If we don't do it here, we can't drop the object later, and we can't
  542. // do this from the destructor because the state of the object doesn't
  543. // allow us to take references anymore.
  544. ProcFSComponentRegistry::the().unregister_process(*this);
  545. m_state.store(State::Dead, AK::MemoryOrder::memory_order_release);
  546. {
  547. // FIXME: PID/TID BUG
  548. if (auto parent_thread = Thread::from_tid(ppid().value())) {
  549. if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
  550. parent_thread->send_signal(SIGCHLD, this);
  551. }
  552. }
  553. if (!!ppid()) {
  554. if (auto parent = Process::from_pid(ppid())) {
  555. parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
  556. parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
  557. }
  558. }
  559. unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated);
  560. m_space->remove_all_regions({});
  561. VERIFY(ref_count() > 0);
  562. // WaitBlockCondition::finalize will be in charge of dropping the last
  563. // reference if there are still waiters around, or whenever the last
  564. // waitable states are consumed. Unless there is no parent around
  565. // anymore, in which case we'll just drop it right away.
  566. m_wait_block_condition.finalize();
  567. }
  568. void Process::disowned_by_waiter(Process& process)
  569. {
  570. m_wait_block_condition.disowned_by_waiter(process);
  571. }
  572. void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal)
  573. {
  574. if (auto parent = Process::from_pid(ppid()))
  575. parent->m_wait_block_condition.unblock(*this, flags, signal);
  576. }
  577. void Process::die()
  578. {
  579. auto expected = State::Running;
  580. if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) {
  581. // It's possible that another thread calls this at almost the same time
  582. // as we can't always instantly kill other threads (they may be blocked)
  583. // So if we already were called then other threads should stop running
  584. // momentarily and we only really need to service the first thread
  585. return;
  586. }
  587. // Let go of the TTY, otherwise a slave PTY may keep the master PTY from
  588. // getting an EOF when the last process using the slave PTY dies.
  589. // If the master PTY owner relies on an EOF to know when to wait() on a
  590. // slave owner, we have to allow the PTY pair to be torn down.
  591. m_tty = nullptr;
  592. VERIFY(m_threads_for_coredump.is_empty());
  593. for_each_thread([&](auto& thread) {
  594. m_threads_for_coredump.append(thread);
  595. });
  596. processes().with_shared([&](const auto& list) {
  597. for (auto it = list.begin(); it != list.end();) {
  598. auto& process = *it;
  599. ++it;
  600. if (process.has_tracee_thread(pid())) {
  601. dbgln_if(PROCESS_DEBUG, "Process {} ({}) is attached by {} ({}) which will exit", process.name(), process.pid(), name(), pid());
  602. process.stop_tracing();
  603. auto err = process.send_signal(SIGSTOP, this);
  604. if (err.is_error())
  605. dbgln("Failed to send the SIGSTOP signal to {} ({})", process.name(), process.pid());
  606. }
  607. }
  608. });
  609. kill_all_threads();
  610. #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
  611. KCOVDevice::free_process();
  612. #endif
  613. }
  614. void Process::terminate_due_to_signal(u8 signal)
  615. {
  616. VERIFY_INTERRUPTS_DISABLED();
  617. VERIFY(signal < 32);
  618. VERIFY(Process::current() == this);
  619. dbgln("Terminating {} due to signal {}", *this, signal);
  620. {
  621. ProtectedDataMutationScope scope { *this };
  622. m_termination_status = 0;
  623. m_termination_signal = signal;
  624. }
  625. die();
  626. }
  627. KResult Process::send_signal(u8 signal, Process* sender)
  628. {
  629. // Try to send it to the "obvious" main thread:
  630. auto receiver_thread = Thread::from_tid(pid().value());
  631. // If the main thread has died, there may still be other threads:
  632. if (!receiver_thread) {
  633. // The first one should be good enough.
  634. // Neither kill(2) nor kill(3) specify any selection precedure.
  635. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
  636. receiver_thread = &thread;
  637. return IterationDecision::Break;
  638. });
  639. }
  640. if (receiver_thread) {
  641. receiver_thread->send_signal(signal, sender);
  642. return KSuccess;
  643. }
  644. return ESRCH;
  645. }
  646. RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity, bool joinable)
  647. {
  648. VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
  649. // FIXME: Do something with guard pages?
  650. auto thread_or_error = Thread::try_create(*this);
  651. if (thread_or_error.is_error())
  652. return {};
  653. auto thread = thread_or_error.release_value();
  654. thread->set_name(move(name));
  655. thread->set_affinity(affinity);
  656. thread->set_priority(priority);
  657. if (!joinable)
  658. thread->detach();
  659. auto& regs = thread->regs();
  660. #if ARCH(I386)
  661. regs.eip = (FlatPtr)entry;
  662. regs.esp = FlatPtr(entry_data); // entry function argument is expected to be in regs.rsp
  663. #else
  664. regs.rip = (FlatPtr)entry;
  665. regs.rsp = FlatPtr(entry_data); // entry function argument is expected to be in regs.rsp
  666. #endif
  667. ScopedSpinLock lock(g_scheduler_lock);
  668. thread->set_state(Thread::State::Runnable);
  669. return thread;
  670. }
  671. void Process::FileDescriptionAndFlags::clear()
  672. {
  673. // FIXME: Verify Process::m_fds_lock is locked!
  674. m_description = nullptr;
  675. m_flags = 0;
  676. m_global_procfs_inode_index = 0;
  677. }
  678. void Process::FileDescriptionAndFlags::refresh_inode_index()
  679. {
  680. // FIXME: Verify Process::m_fds_lock is locked!
  681. m_global_procfs_inode_index = ProcFSComponentRegistry::the().allocate_inode_index();
  682. }
  683. void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
  684. {
  685. // FIXME: Verify Process::m_fds_lock is locked!
  686. m_description = move(description);
  687. m_flags = flags;
  688. m_global_procfs_inode_index = ProcFSComponentRegistry::the().allocate_inode_index();
  689. }
  690. Custody& Process::root_directory()
  691. {
  692. if (!m_root_directory)
  693. m_root_directory = VirtualFileSystem::the().root_custody();
  694. return *m_root_directory;
  695. }
  696. Custody& Process::root_directory_relative_to_global_root()
  697. {
  698. if (!m_root_directory_relative_to_global_root)
  699. m_root_directory_relative_to_global_root = root_directory();
  700. return *m_root_directory_relative_to_global_root;
  701. }
  702. void Process::set_root_directory(const Custody& root)
  703. {
  704. m_root_directory = root;
  705. }
  706. void Process::set_tty(TTY* tty)
  707. {
  708. m_tty = tty;
  709. }
  710. KResult Process::start_tracing_from(ProcessID tracer)
  711. {
  712. auto thread_tracer = ThreadTracer::create(tracer);
  713. if (!thread_tracer)
  714. return ENOMEM;
  715. m_tracer = move(thread_tracer);
  716. return KSuccess;
  717. }
  718. void Process::stop_tracing()
  719. {
  720. m_tracer = nullptr;
  721. }
  722. void Process::tracer_trap(Thread& thread, const RegisterState& regs)
  723. {
  724. VERIFY(m_tracer.ptr());
  725. m_tracer->set_regs(regs);
  726. thread.send_urgent_signal_to_self(SIGTRAP);
  727. }
  728. bool Process::create_perf_events_buffer_if_needed()
  729. {
  730. if (!m_perf_event_buffer) {
  731. m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB);
  732. m_perf_event_buffer->add_process(*this, ProcessEventType::Create);
  733. }
  734. return !!m_perf_event_buffer;
  735. }
  736. void Process::delete_perf_events_buffer()
  737. {
  738. if (m_perf_event_buffer)
  739. m_perf_event_buffer = nullptr;
  740. }
  741. bool Process::remove_thread(Thread& thread)
  742. {
  743. ProtectedDataMutationScope scope { *this };
  744. auto thread_cnt_before = m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
  745. VERIFY(thread_cnt_before != 0);
  746. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  747. m_thread_list.remove(thread);
  748. return thread_cnt_before == 1;
  749. }
  750. bool Process::add_thread(Thread& thread)
  751. {
  752. ProtectedDataMutationScope scope { *this };
  753. bool is_first = m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0;
  754. ScopedSpinLock thread_list_lock(m_thread_list_lock);
  755. m_thread_list.append(thread);
  756. return is_first;
  757. }
  758. void Process::set_dumpable(bool dumpable)
  759. {
  760. if (dumpable == m_dumpable)
  761. return;
  762. ProtectedDataMutationScope scope { *this };
  763. m_dumpable = dumpable;
  764. }
  765. KResult Process::set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value)
  766. {
  767. // Write it into the first available property slot.
  768. for (auto& slot : m_coredump_properties) {
  769. if (slot.key)
  770. continue;
  771. slot.key = move(key);
  772. slot.value = move(value);
  773. return KSuccess;
  774. }
  775. return ENOBUFS;
  776. }
  777. KResult Process::try_set_coredump_property(StringView key, StringView value)
  778. {
  779. auto key_kstring = KString::try_create(key);
  780. auto value_kstring = KString::try_create(value);
  781. if (key_kstring && value_kstring)
  782. return set_coredump_property(key_kstring.release_nonnull(), value_kstring.release_nonnull());
  783. return ENOMEM;
  784. };
  785. }