MemoryManager.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. #include "CMOS.h"
  2. #include "Process.h"
  3. #include "StdLib.h"
  4. #include <AK/Assertions.h>
  5. #include <AK/kstdio.h>
  6. #include <Kernel/Arch/i386/CPU.h>
  7. #include <Kernel/FileSystem/Inode.h>
  8. #include <Kernel/Multiboot.h>
  9. #include <Kernel/VM/AnonymousVMObject.h>
  10. #include <Kernel/VM/InodeVMObject.h>
  11. #include <Kernel/VM/MemoryManager.h>
  12. //#define MM_DEBUG
  13. //#define PAGE_FAULT_DEBUG
  14. static MemoryManager* s_the;
  15. MemoryManager& MM
  16. {
  17. return *s_the;
  18. }
  19. MemoryManager::MemoryManager()
  20. {
  21. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  22. m_page_table_zero = (PageTableEntry*)0x6000;
  23. m_page_table_one = (PageTableEntry*)0x7000;
  24. initialize_paging();
  25. kprintf("MM initialized.\n");
  26. }
  27. MemoryManager::~MemoryManager()
  28. {
  29. }
  30. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  31. {
  32. page_directory.m_directory_page = allocate_supervisor_physical_page();
  33. page_directory.entries()[0].copy_from({}, kernel_page_directory().entries()[0]);
  34. page_directory.entries()[1].copy_from({}, kernel_page_directory().entries()[1]);
  35. // Defer to the kernel page tables for 0xC0000000-0xFFFFFFFF
  36. for (int i = 768; i < 1024; ++i)
  37. page_directory.entries()[i].copy_from({}, kernel_page_directory().entries()[i]);
  38. }
  39. void MemoryManager::initialize_paging()
  40. {
  41. memset(m_page_table_zero, 0, PAGE_SIZE);
  42. memset(m_page_table_one, 0, PAGE_SIZE);
  43. #ifdef MM_DEBUG
  44. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  45. #endif
  46. #ifdef MM_DEBUG
  47. dbgprintf("MM: Protect against null dereferences\n");
  48. #endif
  49. // Make null dereferences crash.
  50. map_protected(VirtualAddress(0), PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Identity map bottom 5MB\n");
  53. #endif
  54. // The bottom 5 MB (except for the null page) are identity mapped & supervisor only.
  55. // Every process shares these mappings.
  56. create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (5 * MB) - PAGE_SIZE);
  57. // Basic memory map:
  58. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  59. // (last page before 1MB) Used by quickmap_page().
  60. // 1 MB -> 3 MB kmalloc_eternal() space.
  61. // 3 MB -> 4 MB kmalloc() space.
  62. // 4 MB -> 5 MB Supervisor physical pages (available for allocation!)
  63. // 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
  64. // 0xc0000000-0xffffffff Kernel-only virtual address space
  65. #ifdef MM_DEBUG
  66. dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
  67. #endif
  68. m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
  69. RefPtr<PhysicalRegion> region;
  70. bool region_is_super = false;
  71. for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
  72. kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
  73. (u32)(mmap->addr >> 32),
  74. (u32)(mmap->addr & 0xffffffff),
  75. (u32)(mmap->len >> 32),
  76. (u32)(mmap->len & 0xffffffff),
  77. (u32)mmap->type);
  78. if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
  79. continue;
  80. // FIXME: Maybe make use of stuff below the 1MB mark?
  81. if (mmap->addr < (1 * MB))
  82. continue;
  83. #ifdef MM_DEBUG
  84. kprintf("MM: considering memory at %p - %p\n",
  85. (u32)mmap->addr, (u32)(mmap->addr + mmap->len));
  86. #endif
  87. for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
  88. auto addr = PhysicalAddress(page_base);
  89. if (page_base < 4 * MB) {
  90. // nothing
  91. } else if (page_base >= 4 * MB && page_base < 5 * MB) {
  92. if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  93. m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
  94. region = m_super_physical_regions.last();
  95. region_is_super = true;
  96. } else {
  97. region->expand(region->lower(), addr);
  98. }
  99. } else {
  100. if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
  101. m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
  102. region = &m_user_physical_regions.last();
  103. region_is_super = false;
  104. } else {
  105. region->expand(region->lower(), addr);
  106. }
  107. }
  108. }
  109. }
  110. for (auto& region : m_super_physical_regions)
  111. m_super_physical_pages += region.finalize_capacity();
  112. for (auto& region : m_user_physical_regions)
  113. m_user_physical_pages += region.finalize_capacity();
  114. #ifdef MM_DEBUG
  115. dbgprintf("MM: Installing page directory\n");
  116. #endif
  117. asm volatile("movl %%eax, %%cr3" ::"a"(kernel_page_directory().cr3()));
  118. asm volatile(
  119. "movl %%cr0, %%eax\n"
  120. "orl $0x80000001, %%eax\n"
  121. "movl %%eax, %%cr0\n" ::
  122. : "%eax", "memory");
  123. #ifdef MM_DEBUG
  124. dbgprintf("MM: Paging initialized.\n");
  125. #endif
  126. }
  127. RefPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  128. {
  129. ASSERT(!page_directory.m_physical_pages.contains(index));
  130. auto physical_page = allocate_supervisor_physical_page();
  131. if (!physical_page)
  132. return nullptr;
  133. page_directory.m_physical_pages.set(index, physical_page);
  134. return physical_page;
  135. }
  136. PageTableEntry& MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr)
  137. {
  138. ASSERT_INTERRUPTS_DISABLED();
  139. u32 page_directory_index = (vaddr.get() >> 22) & 0x3ff;
  140. u32 page_table_index = (vaddr.get() >> 12) & 0x3ff;
  141. PageDirectoryEntry& pde = page_directory.entries()[page_directory_index];
  142. if (!pde.is_present()) {
  143. #ifdef MM_DEBUG
  144. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, vaddr.get());
  145. #endif
  146. if (page_directory_index == 0) {
  147. ASSERT(&page_directory == m_kernel_page_directory);
  148. pde.set_page_table_base((u32)m_page_table_zero);
  149. pde.set_user_allowed(false);
  150. pde.set_present(true);
  151. pde.set_writable(true);
  152. } else if (page_directory_index == 1) {
  153. ASSERT(&page_directory == m_kernel_page_directory);
  154. pde.set_page_table_base((u32)m_page_table_one);
  155. pde.set_user_allowed(false);
  156. pde.set_present(true);
  157. pde.set_writable(true);
  158. } else {
  159. //ASSERT(&page_directory != m_kernel_page_directory.ptr());
  160. auto page_table = allocate_page_table(page_directory, page_directory_index);
  161. #ifdef MM_DEBUG
  162. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  163. &page_directory,
  164. &page_directory == m_kernel_page_directory ? "Kernel" : "User",
  165. page_directory.cr3(),
  166. page_directory_index,
  167. vaddr.get(),
  168. page_table->paddr().get());
  169. #endif
  170. pde.set_page_table_base(page_table->paddr().get());
  171. pde.set_user_allowed(true);
  172. pde.set_present(true);
  173. pde.set_writable(true);
  174. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  175. }
  176. }
  177. return pde.page_table_base()[page_table_index];
  178. }
  179. void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
  180. {
  181. InterruptDisabler disabler;
  182. ASSERT(vaddr.is_page_aligned());
  183. for (u32 offset = 0; offset < length; offset += PAGE_SIZE) {
  184. auto pte_address = vaddr.offset(offset);
  185. auto& pte = ensure_pte(kernel_page_directory(), pte_address);
  186. pte.set_physical_page_base(pte_address.get());
  187. pte.set_user_allowed(false);
  188. pte.set_present(false);
  189. pte.set_writable(false);
  190. flush_tlb(pte_address);
  191. }
  192. }
  193. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
  194. {
  195. InterruptDisabler disabler;
  196. ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
  197. for (u32 offset = 0; offset < size; offset += PAGE_SIZE) {
  198. auto pte_address = vaddr.offset(offset);
  199. auto& pte = ensure_pte(page_directory, pte_address);
  200. pte.set_physical_page_base(pte_address.get());
  201. pte.set_user_allowed(false);
  202. pte.set_present(true);
  203. pte.set_writable(true);
  204. page_directory.flush(pte_address);
  205. }
  206. }
  207. void MemoryManager::initialize()
  208. {
  209. s_the = new MemoryManager;
  210. }
  211. Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
  212. {
  213. if (vaddr.get() < 0xc0000000)
  214. return nullptr;
  215. for (auto* region = MM.m_kernel_regions.head(); region; region = region->next()) {
  216. if (region->contains(vaddr))
  217. return region;
  218. }
  219. return nullptr;
  220. }
  221. Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr)
  222. {
  223. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  224. for (auto& region : process.m_regions) {
  225. if (region.contains(vaddr))
  226. return &region;
  227. }
  228. dbg() << process << " Couldn't find user region for " << vaddr;
  229. return nullptr;
  230. }
  231. Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
  232. {
  233. ASSERT_INTERRUPTS_DISABLED();
  234. if (auto* region = kernel_region_from_vaddr(vaddr))
  235. return region;
  236. return user_region_from_vaddr(process, vaddr);
  237. }
  238. const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
  239. {
  240. if (auto* region = kernel_region_from_vaddr(vaddr))
  241. return region;
  242. return user_region_from_vaddr(const_cast<Process&>(process), vaddr);
  243. }
  244. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  245. {
  246. ASSERT_INTERRUPTS_DISABLED();
  247. auto& vmo = region.vmo();
  248. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  249. sti();
  250. LOCKER(vmo.m_paging_lock);
  251. cli();
  252. if (!vmo_page.is_null()) {
  253. #ifdef PAGE_FAULT_DEBUG
  254. dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
  255. #endif
  256. remap_region_page(region, page_index_in_region);
  257. return true;
  258. }
  259. auto physical_page = allocate_user_physical_page(ShouldZeroFill::Yes);
  260. #ifdef PAGE_FAULT_DEBUG
  261. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  262. #endif
  263. region.set_should_cow(page_index_in_region, false);
  264. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  265. remap_region_page(region, page_index_in_region);
  266. return true;
  267. }
  268. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  269. {
  270. ASSERT_INTERRUPTS_DISABLED();
  271. auto& vmo = region.vmo();
  272. if (vmo.physical_pages()[page_index_in_region]->ref_count() == 1) {
  273. #ifdef PAGE_FAULT_DEBUG
  274. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  275. #endif
  276. region.set_should_cow(page_index_in_region, false);
  277. remap_region_page(region, page_index_in_region);
  278. return true;
  279. }
  280. #ifdef PAGE_FAULT_DEBUG
  281. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  282. #endif
  283. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  284. auto physical_page = allocate_user_physical_page(ShouldZeroFill::No);
  285. u8* dest_ptr = quickmap_page(*physical_page);
  286. const u8* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  287. #ifdef PAGE_FAULT_DEBUG
  288. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  289. #endif
  290. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  291. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  292. unquickmap_page();
  293. region.set_should_cow(page_index_in_region, false);
  294. remap_region_page(region, page_index_in_region);
  295. return true;
  296. }
  297. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  298. {
  299. ASSERT(region.page_directory());
  300. auto& vmo = region.vmo();
  301. ASSERT(vmo.is_inode());
  302. auto& inode_vmobject = static_cast<InodeVMObject&>(vmo);
  303. auto& vmo_page = inode_vmobject.physical_pages()[region.first_page_index() + page_index_in_region];
  304. InterruptFlagSaver saver;
  305. sti();
  306. LOCKER(vmo.m_paging_lock);
  307. cli();
  308. if (!vmo_page.is_null()) {
  309. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  310. remap_region_page(region, page_index_in_region);
  311. return true;
  312. }
  313. #ifdef MM_DEBUG
  314. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  315. #endif
  316. sti();
  317. u8 page_buffer[PAGE_SIZE];
  318. auto& inode = inode_vmobject.inode();
  319. auto nread = inode.read_bytes((region.first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
  320. if (nread < 0) {
  321. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  322. return false;
  323. }
  324. if (nread < PAGE_SIZE) {
  325. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  326. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  327. }
  328. cli();
  329. vmo_page = allocate_user_physical_page(ShouldZeroFill::No);
  330. if (vmo_page.is_null()) {
  331. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  332. return false;
  333. }
  334. remap_region_page(region, page_index_in_region);
  335. u8* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  336. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  337. return true;
  338. }
  339. Region* MemoryManager::region_from_vaddr(VirtualAddress vaddr)
  340. {
  341. if (auto* region = kernel_region_from_vaddr(vaddr))
  342. return region;
  343. auto page_directory = PageDirectory::find_by_pdb(cpu_cr3());
  344. if (!page_directory)
  345. return nullptr;
  346. ASSERT(page_directory->process());
  347. return user_region_from_vaddr(*page_directory->process(), vaddr);
  348. }
  349. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  350. {
  351. ASSERT_INTERRUPTS_DISABLED();
  352. ASSERT(current);
  353. #ifdef PAGE_FAULT_DEBUG
  354. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.vaddr().get());
  355. #endif
  356. ASSERT(fault.vaddr() != m_quickmap_addr);
  357. if (fault.type() == PageFault::Type::PageNotPresent && fault.vaddr().get() >= 0xc0000000) {
  358. auto* current_page_directory = reinterpret_cast<PageDirectoryEntry*>(cpu_cr3());
  359. u32 page_directory_index = (fault.vaddr().get() >> 22) & 0x3ff;
  360. auto& kernel_pde = kernel_page_directory().entries()[page_directory_index];
  361. auto& current_pde = current_page_directory[page_directory_index];
  362. if (kernel_pde.is_present() && !current_pde.is_present()) {
  363. dbg() << "NP(kernel): Copying new kernel mapping for " << fault.vaddr() << " into current page directory";
  364. current_pde.copy_from({}, kernel_pde);
  365. flush_tlb(fault.vaddr().page_base());
  366. return PageFaultResponse::Continue;
  367. }
  368. }
  369. auto* region = region_from_vaddr(fault.vaddr());
  370. if (!region) {
  371. kprintf("NP(error) fault at invalid address L%x\n", fault.vaddr().get());
  372. return PageFaultResponse::ShouldCrash;
  373. }
  374. auto page_index_in_region = region->page_index_from_address(fault.vaddr());
  375. if (fault.type() == PageFault::Type::PageNotPresent) {
  376. if (region->vmo().is_inode()) {
  377. #ifdef PAGE_FAULT_DEBUG
  378. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  379. #endif
  380. page_in_from_inode(*region, page_index_in_region);
  381. return PageFaultResponse::Continue;
  382. }
  383. #ifdef PAGE_FAULT_DEBUG
  384. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  385. #endif
  386. zero_page(*region, page_index_in_region);
  387. return PageFaultResponse::Continue;
  388. }
  389. ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
  390. if (fault.access() == PageFault::Access::Write && region->should_cow(page_index_in_region)) {
  391. #ifdef PAGE_FAULT_DEBUG
  392. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  393. #endif
  394. bool success = copy_on_write(*region, page_index_in_region);
  395. ASSERT(success);
  396. return PageFaultResponse::Continue;
  397. }
  398. kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.vaddr().get());
  399. return PageFaultResponse::ShouldCrash;
  400. }
  401. RefPtr<Region> MemoryManager::allocate_kernel_region(size_t size, const StringView& name, bool user_accessible, bool should_commit)
  402. {
  403. InterruptDisabler disabler;
  404. ASSERT(!(size % PAGE_SIZE));
  405. auto range = kernel_page_directory().range_allocator().allocate_anywhere(size);
  406. ASSERT(range.is_valid());
  407. RefPtr<Region> region;
  408. if (user_accessible)
  409. region = Region::create_user_accessible(range, name, PROT_READ | PROT_WRITE | PROT_EXEC, false);
  410. else
  411. region = Region::create_kernel_only(range, name, PROT_READ | PROT_WRITE | PROT_EXEC, false);
  412. MM.map_region_at_address(*m_kernel_page_directory, *region, range.base());
  413. // FIXME: It would be cool if these could zero-fill on demand instead.
  414. if (should_commit)
  415. region->commit();
  416. return region;
  417. }
  418. RefPtr<Region> MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name)
  419. {
  420. return allocate_kernel_region(size, name, true);
  421. }
  422. void MemoryManager::deallocate_user_physical_page(PhysicalPage&& page)
  423. {
  424. for (auto& region : m_user_physical_regions) {
  425. if (!region.contains(page)) {
  426. kprintf(
  427. "MM: deallocate_user_physical_page: %p not in %p -> %p\n",
  428. page.paddr(), region.lower().get(), region.upper().get());
  429. continue;
  430. }
  431. region.return_page(move(page));
  432. --m_user_physical_pages_used;
  433. return;
  434. }
  435. kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
  436. ASSERT_NOT_REACHED();
  437. }
  438. RefPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
  439. {
  440. InterruptDisabler disabler;
  441. RefPtr<PhysicalPage> page;
  442. for (auto& region : m_user_physical_regions) {
  443. page = region.take_free_page(false);
  444. if (page.is_null())
  445. continue;
  446. }
  447. if (!page) {
  448. if (m_user_physical_regions.is_empty()) {
  449. kprintf("MM: no user physical regions available (?)\n");
  450. }
  451. kprintf("MM: no user physical pages available\n");
  452. ASSERT_NOT_REACHED();
  453. return {};
  454. }
  455. #ifdef MM_DEBUG
  456. dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
  457. #endif
  458. if (should_zero_fill == ShouldZeroFill::Yes) {
  459. auto* ptr = (u32*)quickmap_page(*page);
  460. fast_u32_fill(ptr, 0, PAGE_SIZE / sizeof(u32));
  461. unquickmap_page();
  462. }
  463. ++m_user_physical_pages_used;
  464. return page;
  465. }
  466. void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage&& page)
  467. {
  468. for (auto& region : m_super_physical_regions) {
  469. if (!region.contains(page)) {
  470. kprintf(
  471. "MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
  472. page.paddr(), region.lower().get(), region.upper().get());
  473. continue;
  474. }
  475. region.return_page(move(page));
  476. --m_super_physical_pages_used;
  477. return;
  478. }
  479. kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
  480. ASSERT_NOT_REACHED();
  481. }
  482. RefPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  483. {
  484. InterruptDisabler disabler;
  485. RefPtr<PhysicalPage> page;
  486. for (auto& region : m_super_physical_regions) {
  487. page = region.take_free_page(true);
  488. if (page.is_null())
  489. continue;
  490. }
  491. if (!page) {
  492. if (m_super_physical_regions.is_empty()) {
  493. kprintf("MM: no super physical regions available (?)\n");
  494. }
  495. kprintf("MM: no super physical pages available\n");
  496. ASSERT_NOT_REACHED();
  497. return {};
  498. }
  499. #ifdef MM_DEBUG
  500. dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
  501. #endif
  502. fast_u32_fill((u32*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(u32));
  503. ++m_super_physical_pages_used;
  504. return page;
  505. }
  506. void MemoryManager::enter_process_paging_scope(Process& process)
  507. {
  508. ASSERT(current);
  509. InterruptDisabler disabler;
  510. current->tss().cr3 = process.page_directory().cr3();
  511. asm volatile("movl %%eax, %%cr3" ::"a"(process.page_directory().cr3())
  512. : "memory");
  513. }
  514. void MemoryManager::flush_entire_tlb()
  515. {
  516. asm volatile(
  517. "mov %%cr3, %%eax\n"
  518. "mov %%eax, %%cr3\n" ::
  519. : "%eax", "memory");
  520. }
  521. void MemoryManager::flush_tlb(VirtualAddress vaddr)
  522. {
  523. asm volatile("invlpg %0"
  524. :
  525. : "m"(*(char*)vaddr.get())
  526. : "memory");
  527. }
  528. void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
  529. {
  530. auto& pte = ensure_pte(kernel_page_directory(), vaddr);
  531. pte.set_physical_page_base(paddr.get());
  532. pte.set_present(true);
  533. pte.set_writable(true);
  534. pte.set_user_allowed(false);
  535. flush_tlb(vaddr);
  536. }
  537. u8* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  538. {
  539. ASSERT_INTERRUPTS_DISABLED();
  540. ASSERT(!m_quickmap_in_use);
  541. m_quickmap_in_use = true;
  542. auto page_vaddr = m_quickmap_addr;
  543. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  544. pte.set_physical_page_base(physical_page.paddr().get());
  545. pte.set_present(true);
  546. pte.set_writable(true);
  547. pte.set_user_allowed(false);
  548. flush_tlb(page_vaddr);
  549. ASSERT((u32)pte.physical_page_base() == physical_page.paddr().get());
  550. #ifdef MM_DEBUG
  551. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
  552. #endif
  553. return page_vaddr.as_ptr();
  554. }
  555. void MemoryManager::unquickmap_page()
  556. {
  557. ASSERT_INTERRUPTS_DISABLED();
  558. ASSERT(m_quickmap_in_use);
  559. auto page_vaddr = m_quickmap_addr;
  560. auto& pte = ensure_pte(kernel_page_directory(), page_vaddr);
  561. #ifdef MM_DEBUG
  562. auto old_physical_address = pte.physical_page_base();
  563. #endif
  564. pte.set_physical_page_base(0);
  565. pte.set_present(false);
  566. pte.set_writable(false);
  567. flush_tlb(page_vaddr);
  568. #ifdef MM_DEBUG
  569. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_vaddr, old_physical_address);
  570. #endif
  571. m_quickmap_in_use = false;
  572. }
  573. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region)
  574. {
  575. ASSERT(region.page_directory());
  576. InterruptDisabler disabler;
  577. auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
  578. auto& pte = ensure_pte(*region.page_directory(), page_vaddr);
  579. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  580. ASSERT(physical_page);
  581. pte.set_physical_page_base(physical_page->paddr().get());
  582. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  583. if (region.should_cow(page_index_in_region))
  584. pte.set_writable(false);
  585. else
  586. pte.set_writable(region.is_writable());
  587. pte.set_user_allowed(region.is_user_accessible());
  588. region.page_directory()->flush(page_vaddr);
  589. #ifdef MM_DEBUG
  590. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
  591. #endif
  592. }
  593. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  594. {
  595. InterruptDisabler disabler;
  596. ASSERT(region.page_directory() == &page_directory);
  597. map_region_at_address(page_directory, region, region.vaddr());
  598. }
  599. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr)
  600. {
  601. InterruptDisabler disabler;
  602. region.set_page_directory(page_directory);
  603. auto& vmo = region.vmo();
  604. #ifdef MM_DEBUG
  605. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  606. #endif
  607. for (size_t i = 0; i < region.page_count(); ++i) {
  608. auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
  609. auto& pte = ensure_pte(page_directory, page_vaddr);
  610. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  611. if (physical_page) {
  612. pte.set_physical_page_base(physical_page->paddr().get());
  613. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  614. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  615. if (region.should_cow(region.first_page_index() + i))
  616. pte.set_writable(false);
  617. else
  618. pte.set_writable(region.is_writable());
  619. } else {
  620. pte.set_physical_page_base(0);
  621. pte.set_present(false);
  622. pte.set_writable(region.is_writable());
  623. }
  624. pte.set_user_allowed(region.is_user_accessible());
  625. page_directory.flush(page_vaddr);
  626. #ifdef MM_DEBUG
  627. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  628. #endif
  629. }
  630. }
  631. bool MemoryManager::unmap_region(Region& region)
  632. {
  633. ASSERT(region.page_directory());
  634. InterruptDisabler disabler;
  635. for (size_t i = 0; i < region.page_count(); ++i) {
  636. auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
  637. auto& pte = ensure_pte(*region.page_directory(), vaddr);
  638. pte.set_physical_page_base(0);
  639. pte.set_present(false);
  640. pte.set_writable(false);
  641. pte.set_user_allowed(false);
  642. region.page_directory()->flush(vaddr);
  643. #ifdef MM_DEBUG
  644. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  645. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
  646. #endif
  647. }
  648. region.page_directory()->range_allocator().deallocate({ region.vaddr(), region.size() });
  649. region.release_page_directory();
  650. return true;
  651. }
  652. bool MemoryManager::map_region(Process& process, Region& region)
  653. {
  654. map_region_at_address(process.page_directory(), region, region.vaddr());
  655. return true;
  656. }
  657. bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
  658. {
  659. auto* region = region_from_vaddr(process, vaddr);
  660. return region && region->is_readable();
  661. }
  662. bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
  663. {
  664. auto* region = region_from_vaddr(process, vaddr);
  665. return region && region->is_writable();
  666. }
  667. void MemoryManager::register_vmo(VMObject& vmo)
  668. {
  669. InterruptDisabler disabler;
  670. m_vmobjects.append(&vmo);
  671. }
  672. void MemoryManager::unregister_vmo(VMObject& vmo)
  673. {
  674. InterruptDisabler disabler;
  675. m_vmobjects.remove(&vmo);
  676. }
  677. void MemoryManager::register_region(Region& region)
  678. {
  679. InterruptDisabler disabler;
  680. if (region.vaddr().get() >= 0xc0000000)
  681. m_kernel_regions.append(&region);
  682. else
  683. m_user_regions.append(&region);
  684. }
  685. void MemoryManager::unregister_region(Region& region)
  686. {
  687. InterruptDisabler disabler;
  688. if (region.vaddr().get() >= 0xc0000000)
  689. m_kernel_regions.remove(&region);
  690. else
  691. m_user_regions.remove(&region);
  692. }
  693. ProcessPagingScope::ProcessPagingScope(Process& process)
  694. {
  695. ASSERT(current);
  696. MM.enter_process_paging_scope(process);
  697. }
  698. ProcessPagingScope::~ProcessPagingScope()
  699. {
  700. MM.enter_process_paging_scope(current->process());
  701. }