MemoryManager.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. #include "MemoryManager.h"
  2. #include <AK/Assertions.h>
  3. #include <AK/kstdio.h>
  4. #include <AK/kmalloc.h>
  5. #include "i386.h"
  6. #include "StdLib.h"
  7. #include "Process.h"
  8. #include <LibC/errno_numbers.h>
  9. #include "CMOS.h"
  10. //#define MM_DEBUG
  11. //#define PAGE_FAULT_DEBUG
  12. static MemoryManager* s_the;
  13. MemoryManager& MM
  14. {
  15. return *s_the;
  16. }
  17. MemoryManager::MemoryManager()
  18. {
  19. // FIXME: This is not the best way to do memory map detection.
  20. // Rewrite to use BIOS int 15,e820 once we have VM86 support.
  21. word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15);
  22. word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17);
  23. kprintf("%u kB base memory\n", base_memory);
  24. kprintf("%u kB extended memory\n", ext_memory);
  25. m_ram_size = ext_memory * 1024;
  26. m_kernel_page_directory = PageDirectory::create_at_fixed_address(PhysicalAddress(0x4000));
  27. m_page_table_zero = (dword*)0x6000;
  28. initialize_paging();
  29. }
  30. MemoryManager::~MemoryManager()
  31. {
  32. }
  33. PageDirectory::PageDirectory(PhysicalAddress paddr)
  34. {
  35. m_directory_page = PhysicalPage::create_eternal(paddr, true);
  36. }
  37. PageDirectory::PageDirectory()
  38. {
  39. MM.populate_page_directory(*this);
  40. }
  41. void MemoryManager::populate_page_directory(PageDirectory& page_directory)
  42. {
  43. page_directory.m_directory_page = allocate_supervisor_physical_page();
  44. page_directory.entries()[0] = kernel_page_directory().entries()[0];
  45. }
  46. void MemoryManager::initialize_paging()
  47. {
  48. static_assert(sizeof(MemoryManager::PageDirectoryEntry) == 4);
  49. static_assert(sizeof(MemoryManager::PageTableEntry) == 4);
  50. memset(m_page_table_zero, 0, PAGE_SIZE);
  51. #ifdef MM_DEBUG
  52. dbgprintf("MM: Kernel page directory @ %p\n", kernel_page_directory().cr3());
  53. #endif
  54. #ifdef MM_DEBUG
  55. dbgprintf("MM: Protect against null dereferences\n");
  56. #endif
  57. // Make null dereferences crash.
  58. map_protected(LinearAddress(0), PAGE_SIZE);
  59. #ifdef MM_DEBUG
  60. dbgprintf("MM: Identity map bottom 4MB\n");
  61. #endif
  62. // The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
  63. // Every process shares these mappings.
  64. create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
  65. // Basic memory map:
  66. // 0 -> 512 kB Kernel code. Root page directory & PDE 0.
  67. // (last page before 1MB) Used by quickmap_page().
  68. // 1 MB -> 2 MB kmalloc_eternal() space.
  69. // 2 MB -> 3 MB kmalloc() space.
  70. // 3 MB -> 4 MB Supervisor physical pages (available for allocation!)
  71. // 4 MB -> (max) MB Userspace physical pages (available for allocation!)
  72. for (size_t i = (2 * MB); i < (4 * MB); i += PAGE_SIZE)
  73. m_free_supervisor_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), true));
  74. dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
  75. for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
  76. m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), false));
  77. m_quickmap_addr = LinearAddress((1 * MB) - PAGE_SIZE);
  78. #ifdef MM_DEBUG
  79. dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
  80. dbgprintf("MM: Installing page directory\n");
  81. #endif
  82. asm volatile("movl %%eax, %%cr3"::"a"(kernel_page_directory().cr3()));
  83. asm volatile(
  84. "movl %%cr0, %%eax\n"
  85. "orl $0x80000001, %%eax\n"
  86. "movl %%eax, %%cr0\n"
  87. :::"%eax", "memory");
  88. }
  89. RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_directory, unsigned index)
  90. {
  91. ASSERT(!page_directory.m_physical_pages.contains(index));
  92. auto physical_page = allocate_supervisor_physical_page();
  93. if (!physical_page)
  94. return nullptr;
  95. page_directory.m_physical_pages.set(index, physical_page.copy_ref());
  96. return physical_page;
  97. }
  98. void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  99. {
  100. InterruptDisabler disabler;
  101. // FIXME: ASSERT(laddr is 4KB aligned);
  102. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  103. auto pte_address = laddr.offset(offset);
  104. auto pte = ensure_pte(page_directory, pte_address);
  105. pte.set_physical_page_base(0);
  106. pte.set_user_allowed(false);
  107. pte.set_present(true);
  108. pte.set_writable(true);
  109. flush_tlb(pte_address);
  110. }
  111. }
  112. auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
  113. {
  114. ASSERT_INTERRUPTS_DISABLED();
  115. dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
  116. dword page_table_index = (laddr.get() >> 12) & 0x3ff;
  117. PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
  118. if (!pde.is_present()) {
  119. #ifdef MM_DEBUG
  120. dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
  121. #endif
  122. if (page_directory_index == 0) {
  123. ASSERT(&page_directory == m_kernel_page_directory.ptr());
  124. pde.set_page_table_base((dword)m_page_table_zero);
  125. pde.set_user_allowed(false);
  126. pde.set_present(true);
  127. pde.set_writable(true);
  128. } else {
  129. ASSERT(&page_directory != m_kernel_page_directory.ptr());
  130. auto page_table = allocate_page_table(page_directory, page_directory_index);
  131. #ifdef MM_DEBUG
  132. dbgprintf("MM: PD K%x (%s) at P%x allocated page table #%u (for L%x) at P%x\n",
  133. &page_directory,
  134. &page_directory == m_kernel_page_directory.ptr() ? "Kernel" : "User",
  135. page_directory.cr3(),
  136. page_directory_index,
  137. laddr.get(),
  138. page_table->paddr().get());
  139. #endif
  140. pde.set_page_table_base(page_table->paddr().get());
  141. pde.set_user_allowed(true);
  142. pde.set_present(true);
  143. pde.set_writable(true);
  144. page_directory.m_physical_pages.set(page_directory_index, move(page_table));
  145. }
  146. }
  147. return PageTableEntry(&pde.page_table_base()[page_table_index]);
  148. }
  149. void MemoryManager::map_protected(LinearAddress laddr, size_t length)
  150. {
  151. InterruptDisabler disabler;
  152. // FIXME: ASSERT(linearAddress is 4KB aligned);
  153. for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
  154. auto pte_address = laddr.offset(offset);
  155. auto pte = ensure_pte(kernel_page_directory(), pte_address);
  156. pte.set_physical_page_base(pte_address.get());
  157. pte.set_user_allowed(false);
  158. pte.set_present(false);
  159. pte.set_writable(false);
  160. flush_tlb(pte_address);
  161. }
  162. }
  163. void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
  164. {
  165. InterruptDisabler disabler;
  166. ASSERT((laddr.get() & ~PAGE_MASK) == 0);
  167. for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
  168. auto pte_address = laddr.offset(offset);
  169. auto pte = ensure_pte(page_directory, pte_address);
  170. pte.set_physical_page_base(pte_address.get());
  171. pte.set_user_allowed(false);
  172. pte.set_present(true);
  173. pte.set_writable(true);
  174. page_directory.flush(pte_address);
  175. }
  176. }
  177. void MemoryManager::initialize()
  178. {
  179. s_the = new MemoryManager;
  180. }
  181. Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
  182. {
  183. ASSERT_INTERRUPTS_DISABLED();
  184. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  185. for (auto& region : process.m_regions) {
  186. if (region->contains(laddr))
  187. return region.ptr();
  188. }
  189. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  190. return nullptr;
  191. }
  192. const Region* MemoryManager::region_from_laddr(const Process& process, LinearAddress laddr)
  193. {
  194. // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
  195. for (auto& region : process.m_regions) {
  196. if (region->contains(laddr))
  197. return region.ptr();
  198. }
  199. dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
  200. return nullptr;
  201. }
  202. bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
  203. {
  204. ASSERT_INTERRUPTS_DISABLED();
  205. auto& vmo = region.vmo();
  206. auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
  207. #ifdef PAGE_FAULT_DEBUG
  208. dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
  209. #endif
  210. region.m_cow_map.set(page_index_in_region, false);
  211. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  212. remap_region_page(region, page_index_in_region, true);
  213. return true;
  214. }
  215. bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
  216. {
  217. ASSERT_INTERRUPTS_DISABLED();
  218. auto& vmo = region.vmo();
  219. if (vmo.physical_pages()[page_index_in_region]->retain_count() == 1) {
  220. #ifdef PAGE_FAULT_DEBUG
  221. dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
  222. #endif
  223. region.m_cow_map.set(page_index_in_region, false);
  224. remap_region_page(region, page_index_in_region, true);
  225. return true;
  226. }
  227. #ifdef PAGE_FAULT_DEBUG
  228. dbgprintf(" >> It's a COW page and it's time to COW!\n");
  229. #endif
  230. auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
  231. auto physical_page = allocate_physical_page(ShouldZeroFill::No);
  232. byte* dest_ptr = quickmap_page(*physical_page);
  233. const byte* src_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  234. #ifdef PAGE_FAULT_DEBUG
  235. dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
  236. #endif
  237. memcpy(dest_ptr, src_ptr, PAGE_SIZE);
  238. vmo.physical_pages()[page_index_in_region] = move(physical_page);
  239. unquickmap_page();
  240. region.m_cow_map.set(page_index_in_region, false);
  241. remap_region_page(region, page_index_in_region, true);
  242. return true;
  243. }
  244. bool Region::page_in()
  245. {
  246. ASSERT(m_page_directory);
  247. ASSERT(!vmo().is_anonymous());
  248. ASSERT(vmo().inode());
  249. #ifdef MM_DEBUG
  250. dbgprintf("MM: page_in %u pages\n", page_count());
  251. #endif
  252. for (size_t i = 0; i < page_count(); ++i) {
  253. auto& vmo_page = vmo().physical_pages()[first_page_index() + i];
  254. if (vmo_page.is_null()) {
  255. bool success = MM.page_in_from_inode(*this, i);
  256. if (!success)
  257. return false;
  258. }
  259. MM.remap_region_page(*this, i, true);
  260. }
  261. return true;
  262. }
  263. bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_region)
  264. {
  265. ASSERT(region.page_directory());
  266. auto& vmo = region.vmo();
  267. ASSERT(!vmo.is_anonymous());
  268. ASSERT(vmo.inode());
  269. auto& vmo_page = vmo.physical_pages()[region.first_page_index() + page_index_in_region];
  270. InterruptFlagSaver saver;
  271. sti();
  272. LOCKER(vmo.m_paging_lock);
  273. cli();
  274. if (!vmo_page.is_null()) {
  275. dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
  276. remap_region_page(region, page_index_in_region, true);
  277. return true;
  278. }
  279. #ifdef MM_DEBUG
  280. dbgprintf("MM: page_in_from_inode ready to read from inode\n");
  281. #endif
  282. sti();
  283. byte page_buffer[PAGE_SIZE];
  284. auto& inode = *vmo.inode();
  285. auto nread = inode.read_bytes(vmo.inode_offset() + ((region.first_page_index() + page_index_in_region) * PAGE_SIZE), PAGE_SIZE, page_buffer, nullptr);
  286. if (nread < 0) {
  287. kprintf("MM: page_in_from_inode had error (%d) while reading!\n", nread);
  288. return false;
  289. }
  290. if (nread < PAGE_SIZE) {
  291. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  292. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  293. }
  294. cli();
  295. vmo_page = allocate_physical_page(ShouldZeroFill::No);
  296. if (vmo_page.is_null()) {
  297. kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
  298. return false;
  299. }
  300. remap_region_page(region, page_index_in_region, true);
  301. byte* dest_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
  302. memcpy(dest_ptr, page_buffer, PAGE_SIZE);
  303. return true;
  304. }
  305. PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
  306. {
  307. ASSERT_INTERRUPTS_DISABLED();
  308. #ifdef PAGE_FAULT_DEBUG
  309. dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
  310. #endif
  311. ASSERT(fault.laddr() != m_quickmap_addr);
  312. auto* region = region_from_laddr(*current, fault.laddr());
  313. if (!region) {
  314. kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
  315. return PageFaultResponse::ShouldCrash;
  316. }
  317. auto page_index_in_region = region->page_index_from_address(fault.laddr());
  318. if (fault.is_not_present()) {
  319. if (region->vmo().inode()) {
  320. #ifdef PAGE_FAULT_DEBUG
  321. dbgprintf("NP(inode) fault in Region{%p}[%u]\n", region, page_index_in_region);
  322. #endif
  323. page_in_from_inode(*region, page_index_in_region);
  324. return PageFaultResponse::Continue;
  325. } else {
  326. #ifdef PAGE_FAULT_DEBUG
  327. dbgprintf("NP(zero) fault in Region{%p}[%u]\n", region, page_index_in_region);
  328. #endif
  329. zero_page(*region, page_index_in_region);
  330. return PageFaultResponse::Continue;
  331. }
  332. } else if (fault.is_protection_violation()) {
  333. if (region->m_cow_map.get(page_index_in_region)) {
  334. #ifdef PAGE_FAULT_DEBUG
  335. dbgprintf("PV(cow) fault in Region{%p}[%u]\n", region, page_index_in_region);
  336. #endif
  337. bool success = copy_on_write(*region, page_index_in_region);
  338. ASSERT(success);
  339. return PageFaultResponse::Continue;
  340. }
  341. kprintf("PV(error) fault in Region{%p}[%u]\n", region, page_index_in_region);
  342. } else {
  343. ASSERT_NOT_REACHED();
  344. }
  345. return PageFaultResponse::ShouldCrash;
  346. }
  347. RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
  348. {
  349. InterruptDisabler disabler;
  350. if (1 > m_free_physical_pages.size())
  351. return { };
  352. #ifdef MM_DEBUG
  353. dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
  354. #endif
  355. auto physical_page = m_free_physical_pages.take_last();
  356. if (should_zero_fill == ShouldZeroFill::Yes) {
  357. auto* ptr = (dword*)quickmap_page(*physical_page);
  358. fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
  359. unquickmap_page();
  360. }
  361. return physical_page;
  362. }
  363. RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
  364. {
  365. InterruptDisabler disabler;
  366. if (1 > m_free_supervisor_physical_pages.size())
  367. return { };
  368. #ifdef MM_DEBUG
  369. dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
  370. #endif
  371. auto physical_page = m_free_supervisor_physical_pages.take_last();
  372. fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
  373. return physical_page;
  374. }
  375. void MemoryManager::enter_process_paging_scope(Process& process)
  376. {
  377. InterruptDisabler disabler;
  378. current->m_tss.cr3 = process.page_directory().cr3();
  379. asm volatile("movl %%eax, %%cr3"::"a"(process.page_directory().cr3()):"memory");
  380. }
  381. void MemoryManager::flush_entire_tlb()
  382. {
  383. asm volatile(
  384. "mov %%cr3, %%eax\n"
  385. "mov %%eax, %%cr3\n"
  386. ::: "%eax", "memory"
  387. );
  388. }
  389. void MemoryManager::flush_tlb(LinearAddress laddr)
  390. {
  391. asm volatile("invlpg %0": :"m" (*(char*)laddr.get()) : "memory");
  392. }
  393. byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
  394. {
  395. ASSERT_INTERRUPTS_DISABLED();
  396. ASSERT(!m_quickmap_in_use);
  397. m_quickmap_in_use = true;
  398. auto page_laddr = m_quickmap_addr;
  399. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  400. pte.set_physical_page_base(physical_page.paddr().get());
  401. pte.set_present(true);
  402. pte.set_writable(true);
  403. pte.set_user_allowed(false);
  404. flush_tlb(page_laddr);
  405. ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
  406. #ifdef MM_DEBUG
  407. dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
  408. #endif
  409. return page_laddr.as_ptr();
  410. }
  411. void MemoryManager::unquickmap_page()
  412. {
  413. ASSERT_INTERRUPTS_DISABLED();
  414. ASSERT(m_quickmap_in_use);
  415. auto page_laddr = m_quickmap_addr;
  416. auto pte = ensure_pte(kernel_page_directory(), page_laddr);
  417. #ifdef MM_DEBUG
  418. auto old_physical_address = pte.physical_page_base();
  419. #endif
  420. pte.set_physical_page_base(0);
  421. pte.set_present(false);
  422. pte.set_writable(false);
  423. flush_tlb(page_laddr);
  424. #ifdef MM_DEBUG
  425. dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
  426. #endif
  427. m_quickmap_in_use = false;
  428. }
  429. void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_region, bool user_allowed)
  430. {
  431. ASSERT(region.page_directory());
  432. InterruptDisabler disabler;
  433. auto page_laddr = region.laddr().offset(page_index_in_region * PAGE_SIZE);
  434. auto pte = ensure_pte(*region.page_directory(), page_laddr);
  435. auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
  436. ASSERT(physical_page);
  437. pte.set_physical_page_base(physical_page->paddr().get());
  438. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  439. if (region.m_cow_map.get(page_index_in_region))
  440. pte.set_writable(false);
  441. else
  442. pte.set_writable(region.is_writable());
  443. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  444. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  445. pte.set_user_allowed(user_allowed);
  446. region.page_directory()->flush(page_laddr);
  447. #ifdef MM_DEBUG
  448. dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
  449. #endif
  450. }
  451. void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
  452. {
  453. InterruptDisabler disabler;
  454. ASSERT(region.page_directory() == &page_directory);
  455. map_region_at_address(page_directory, region, region.laddr(), true);
  456. }
  457. void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
  458. {
  459. InterruptDisabler disabler;
  460. region.set_page_directory(page_directory);
  461. auto& vmo = region.vmo();
  462. #ifdef MM_DEBUG
  463. dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
  464. #endif
  465. for (size_t i = 0; i < region.page_count(); ++i) {
  466. auto page_laddr = laddr.offset(i * PAGE_SIZE);
  467. auto pte = ensure_pte(page_directory, page_laddr);
  468. auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
  469. if (physical_page) {
  470. pte.set_physical_page_base(physical_page->paddr().get());
  471. pte.set_present(true); // FIXME: Maybe we should use the is_readable flag here?
  472. // FIXME: It seems wrong that the *region* cow map is essentially using *VMO* relative indices.
  473. if (region.m_cow_map.get(region.first_page_index() + i))
  474. pte.set_writable(false);
  475. else
  476. pte.set_writable(region.is_writable());
  477. pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
  478. pte.set_write_through(!region.vmo().m_allow_cpu_caching);
  479. } else {
  480. pte.set_physical_page_base(0);
  481. pte.set_present(false);
  482. pte.set_writable(region.is_writable());
  483. }
  484. pte.set_user_allowed(user_allowed);
  485. page_directory.flush(page_laddr);
  486. #ifdef MM_DEBUG
  487. dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
  488. #endif
  489. }
  490. }
  491. bool MemoryManager::unmap_region(Region& region)
  492. {
  493. ASSERT(region.page_directory());
  494. InterruptDisabler disabler;
  495. for (size_t i = 0; i < region.page_count(); ++i) {
  496. auto laddr = region.laddr().offset(i * PAGE_SIZE);
  497. auto pte = ensure_pte(*region.page_directory(), laddr);
  498. pte.set_physical_page_base(0);
  499. pte.set_present(false);
  500. pte.set_writable(false);
  501. pte.set_user_allowed(false);
  502. region.page_directory()->flush(laddr);
  503. #ifdef MM_DEBUG
  504. auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
  505. dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
  506. #endif
  507. }
  508. region.release_page_directory();
  509. return true;
  510. }
  511. bool MemoryManager::map_region(Process& process, Region& region)
  512. {
  513. map_region_at_address(process.page_directory(), region, region.laddr(), true);
  514. return true;
  515. }
  516. bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
  517. {
  518. auto* region = region_from_laddr(process, laddr);
  519. return region && region->is_readable();
  520. }
  521. bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
  522. {
  523. auto* region = region_from_laddr(process, laddr);
  524. return region && region->is_writable();
  525. }
  526. RetainPtr<Region> Region::clone()
  527. {
  528. if (m_shared || (m_readable && !m_writable)) {
  529. dbgprintf("%s<%u> Region::clone(): sharing %s (L%x)\n",
  530. current->name().characters(),
  531. current->pid(),
  532. m_name.characters(),
  533. laddr().get());
  534. // Create a new region backed by the same VMObject.
  535. return adopt(*new Region(laddr(), size(), m_vmo.copy_ref(), m_offset_in_vmo, String(m_name), m_readable, m_writable));
  536. }
  537. dbgprintf("%s<%u> Region::clone(): cowing %s (L%x)\n",
  538. current->name().characters(),
  539. current->pid(),
  540. m_name.characters(),
  541. laddr().get());
  542. // Set up a COW region. The parent (this) region becomes COW as well!
  543. for (size_t i = 0; i < page_count(); ++i)
  544. m_cow_map.set(i, true);
  545. MM.remap_region(current->page_directory(), *this);
  546. return adopt(*new Region(laddr(), size(), m_vmo->clone(), m_offset_in_vmo, String(m_name), m_readable, m_writable, true));
  547. }
  548. Region::Region(LinearAddress a, size_t s, String&& n, bool r, bool w, bool cow)
  549. : m_laddr(a)
  550. , m_size(s)
  551. , m_vmo(VMObject::create_anonymous(s))
  552. , m_name(move(n))
  553. , m_readable(r)
  554. , m_writable(w)
  555. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  556. {
  557. m_vmo->set_name(m_name);
  558. MM.register_region(*this);
  559. }
  560. Region::Region(LinearAddress a, size_t s, RetainPtr<Inode>&& inode, String&& n, bool r, bool w)
  561. : m_laddr(a)
  562. , m_size(s)
  563. , m_vmo(VMObject::create_file_backed(move(inode)))
  564. , m_name(move(n))
  565. , m_readable(r)
  566. , m_writable(w)
  567. , m_cow_map(Bitmap::create(m_vmo->page_count()))
  568. {
  569. MM.register_region(*this);
  570. }
  571. Region::Region(LinearAddress a, size_t s, RetainPtr<VMObject>&& vmo, size_t offset_in_vmo, String&& n, bool r, bool w, bool cow)
  572. : m_laddr(a)
  573. , m_size(s)
  574. , m_offset_in_vmo(offset_in_vmo)
  575. , m_vmo(move(vmo))
  576. , m_name(move(n))
  577. , m_readable(r)
  578. , m_writable(w)
  579. , m_cow_map(Bitmap::create(m_vmo->page_count(), cow))
  580. {
  581. MM.register_region(*this);
  582. }
  583. Region::~Region()
  584. {
  585. if (m_page_directory) {
  586. MM.unmap_region(*this);
  587. ASSERT(!m_page_directory);
  588. }
  589. MM.unregister_region(*this);
  590. }
  591. RetainPtr<PhysicalPage> PhysicalPage::create_eternal(PhysicalAddress paddr, bool supervisor)
  592. {
  593. void* slot = kmalloc_eternal(sizeof(PhysicalPage));
  594. new (slot) PhysicalPage(paddr, supervisor);
  595. return adopt(*(PhysicalPage*)slot);
  596. }
  597. RetainPtr<PhysicalPage> PhysicalPage::create(PhysicalAddress paddr, bool supervisor)
  598. {
  599. void* slot = kmalloc(sizeof(PhysicalPage));
  600. new (slot) PhysicalPage(paddr, supervisor, false);
  601. return adopt(*(PhysicalPage*)slot);
  602. }
  603. PhysicalPage::PhysicalPage(PhysicalAddress paddr, bool supervisor, bool may_return_to_freelist)
  604. : m_may_return_to_freelist(may_return_to_freelist)
  605. , m_supervisor(supervisor)
  606. , m_paddr(paddr)
  607. {
  608. }
  609. void PhysicalPage::return_to_freelist()
  610. {
  611. ASSERT((paddr().get() & ~PAGE_MASK) == 0);
  612. InterruptDisabler disabler;
  613. m_retain_count = 1;
  614. if (m_supervisor)
  615. MM.m_free_supervisor_physical_pages.append(adopt(*this));
  616. else
  617. MM.m_free_physical_pages.append(adopt(*this));
  618. #ifdef MM_DEBUG
  619. dbgprintf("MM: P%x released to freelist\n", m_paddr.get());
  620. #endif
  621. }
  622. RetainPtr<VMObject> VMObject::create_file_backed(RetainPtr<Inode>&& inode)
  623. {
  624. InterruptDisabler disabler;
  625. if (inode->vmo())
  626. return static_cast<VMObject*>(inode->vmo());
  627. auto vmo = adopt(*new VMObject(move(inode)));
  628. vmo->inode()->set_vmo(*vmo);
  629. return vmo;
  630. }
  631. RetainPtr<VMObject> VMObject::create_anonymous(size_t size)
  632. {
  633. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  634. return adopt(*new VMObject(size));
  635. }
  636. RetainPtr<VMObject> VMObject::create_for_physical_range(PhysicalAddress paddr, size_t size)
  637. {
  638. size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE;
  639. auto vmo = adopt(*new VMObject(paddr, size));
  640. vmo->m_allow_cpu_caching = false;
  641. return vmo;
  642. }
  643. RetainPtr<VMObject> VMObject::clone()
  644. {
  645. return adopt(*new VMObject(*this));
  646. }
  647. VMObject::VMObject(VMObject& other)
  648. : m_name(other.m_name)
  649. , m_anonymous(other.m_anonymous)
  650. , m_inode_offset(other.m_inode_offset)
  651. , m_size(other.m_size)
  652. , m_inode(other.m_inode)
  653. , m_physical_pages(other.m_physical_pages)
  654. {
  655. MM.register_vmo(*this);
  656. }
  657. VMObject::VMObject(size_t size)
  658. : m_anonymous(true)
  659. , m_size(size)
  660. {
  661. MM.register_vmo(*this);
  662. m_physical_pages.resize(page_count());
  663. }
  664. VMObject::VMObject(PhysicalAddress paddr, size_t size)
  665. : m_anonymous(true)
  666. , m_size(size)
  667. {
  668. MM.register_vmo(*this);
  669. for (size_t i = 0; i < size; i += PAGE_SIZE) {
  670. m_physical_pages.append(PhysicalPage::create(paddr.offset(i), false));
  671. }
  672. ASSERT(m_physical_pages.size() == page_count());
  673. }
  674. VMObject::VMObject(RetainPtr<Inode>&& inode)
  675. : m_inode(move(inode))
  676. {
  677. ASSERT(m_inode);
  678. m_size = ceil_div(m_inode->size(), PAGE_SIZE) * PAGE_SIZE;
  679. m_physical_pages.resize(page_count());
  680. MM.register_vmo(*this);
  681. }
  682. VMObject::~VMObject()
  683. {
  684. if (m_inode)
  685. ASSERT(m_inode->vmo() == this);
  686. MM.unregister_vmo(*this);
  687. }
  688. template<typename Callback>
  689. void VMObject::for_each_region(Callback callback)
  690. {
  691. // FIXME: Figure out a better data structure so we don't have to walk every single region every time an inode changes.
  692. // Perhaps VMObject could have a Vector<Region*> with all of his mappers?
  693. for (auto* region : MM.m_regions) {
  694. if (&region->vmo() == this)
  695. callback(*region);
  696. }
  697. }
  698. void VMObject::inode_size_changed(Badge<Inode>, size_t old_size, size_t new_size)
  699. {
  700. InterruptDisabler disabler;
  701. size_t old_page_count = page_count();
  702. m_size = new_size;
  703. if (page_count() > old_page_count) {
  704. // Add null pages and let the fault handler page these in when that day comes.
  705. for (size_t i = old_page_count; i < page_count(); ++i)
  706. m_physical_pages.append(nullptr);
  707. } else {
  708. // Prune the no-longer valid pages. I'm not sure this is actually correct behavior.
  709. for (size_t i = page_count(); i < old_page_count; ++i)
  710. m_physical_pages.take_last();
  711. }
  712. // FIXME: Consolidate with inode_contents_changed() so we only do a single walk.
  713. for_each_region([] (Region& region) {
  714. ASSERT(region.page_directory());
  715. MM.remap_region(*region.page_directory(), region);
  716. });
  717. }
  718. void VMObject::inode_contents_changed(Badge<Inode>, off_t offset, size_t size, const byte* data)
  719. {
  720. InterruptDisabler disabler;
  721. ASSERT(offset >= 0);
  722. // FIXME: Only invalidate the parts that actually changed.
  723. for (auto& physical_page : m_physical_pages)
  724. physical_page = nullptr;
  725. #if 0
  726. size_t current_offset = offset;
  727. size_t remaining_bytes = size;
  728. const byte* data_ptr = data;
  729. auto to_page_index = [] (size_t offset) -> size_t {
  730. return offset / PAGE_SIZE;
  731. };
  732. if (current_offset & PAGE_MASK) {
  733. size_t page_index = to_page_index(current_offset);
  734. size_t bytes_to_copy = min(size, PAGE_SIZE - (current_offset & PAGE_MASK));
  735. if (m_physical_pages[page_index]) {
  736. auto* ptr = MM.quickmap_page(*m_physical_pages[page_index]);
  737. memcpy(ptr, data_ptr, bytes_to_copy);
  738. MM.unquickmap_page();
  739. }
  740. current_offset += bytes_to_copy;
  741. data += bytes_to_copy;
  742. remaining_bytes -= bytes_to_copy;
  743. }
  744. for (size_t page_index = to_page_index(current_offset); page_index < m_physical_pages.size(); ++page_index) {
  745. size_t bytes_to_copy = PAGE_SIZE - (current_offset & PAGE_MASK);
  746. if (m_physical_pages[page_index]) {
  747. auto* ptr = MM.quickmap_page(*m_physical_pages[page_index]);
  748. memcpy(ptr, data_ptr, bytes_to_copy);
  749. MM.unquickmap_page();
  750. }
  751. current_offset += bytes_to_copy;
  752. data += bytes_to_copy;
  753. }
  754. #endif
  755. // FIXME: Consolidate with inode_size_changed() so we only do a single walk.
  756. for_each_region([] (Region& region) {
  757. ASSERT(region.page_directory());
  758. MM.remap_region(*region.page_directory(), region);
  759. });
  760. }
  761. int Region::commit()
  762. {
  763. InterruptDisabler disabler;
  764. #ifdef MM_DEBUG
  765. dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), laddr().get());
  766. #endif
  767. for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
  768. if (!vmo().physical_pages()[i].is_null())
  769. continue;
  770. auto physical_page = MM.allocate_physical_page(MemoryManager::ShouldZeroFill::Yes);
  771. if (!physical_page) {
  772. kprintf("MM: commit was unable to allocate a physical page\n");
  773. return -ENOMEM;
  774. }
  775. vmo().physical_pages()[i] = move(physical_page);
  776. MM.remap_region_page(*this, i, true);
  777. }
  778. return 0;
  779. }
  780. void MemoryManager::register_vmo(VMObject& vmo)
  781. {
  782. InterruptDisabler disabler;
  783. m_vmos.set(&vmo);
  784. }
  785. void MemoryManager::unregister_vmo(VMObject& vmo)
  786. {
  787. InterruptDisabler disabler;
  788. m_vmos.remove(&vmo);
  789. }
  790. void MemoryManager::register_region(Region& region)
  791. {
  792. InterruptDisabler disabler;
  793. m_regions.set(&region);
  794. }
  795. void MemoryManager::unregister_region(Region& region)
  796. {
  797. InterruptDisabler disabler;
  798. m_regions.remove(&region);
  799. }
  800. size_t Region::amount_resident() const
  801. {
  802. size_t bytes = 0;
  803. for (size_t i = 0; i < page_count(); ++i) {
  804. if (m_vmo->physical_pages()[first_page_index() + i])
  805. bytes += PAGE_SIZE;
  806. }
  807. return bytes;
  808. }
  809. size_t Region::amount_shared() const
  810. {
  811. size_t bytes = 0;
  812. for (size_t i = 0; i < page_count(); ++i) {
  813. auto& physical_page = m_vmo->physical_pages()[first_page_index() + i];
  814. if (physical_page && physical_page->retain_count() > 1)
  815. bytes += PAGE_SIZE;
  816. }
  817. return bytes;
  818. }
  819. PageDirectory::~PageDirectory()
  820. {
  821. #ifdef MM_DEBUG
  822. dbgprintf("MM: ~PageDirectory K%x\n", this);
  823. #endif
  824. }
  825. void PageDirectory::flush(LinearAddress laddr)
  826. {
  827. if (&current->page_directory() == this)
  828. MM.flush_tlb(laddr);
  829. }