MathObject.cpp 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. /*
  2. * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
  3. * Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice,
  13. * this list of conditions and the following disclaimer in the documentation
  14. * and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  19. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  20. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  25. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <AK/FlyString.h>
  28. #include <AK/Function.h>
  29. #include <LibJS/Interpreter.h>
  30. #include <LibJS/Runtime/GlobalObject.h>
  31. #include <LibJS/Runtime/MathObject.h>
  32. #include <math.h>
  33. namespace JS {
  34. MathObject::MathObject(GlobalObject& global_object)
  35. : Object(global_object.object_prototype())
  36. {
  37. }
  38. void MathObject::initialize(Interpreter&, GlobalObject&)
  39. {
  40. u8 attr = Attribute::Writable | Attribute::Configurable;
  41. define_native_function("abs", abs, 1, attr);
  42. define_native_function("random", random, 0, attr);
  43. define_native_function("sqrt", sqrt, 1, attr);
  44. define_native_function("floor", floor, 1, attr);
  45. define_native_function("ceil", ceil, 1, attr);
  46. define_native_function("round", round, 1, attr);
  47. define_native_function("max", max, 2, attr);
  48. define_native_function("min", min, 2, attr);
  49. define_native_function("trunc", trunc, 1, attr);
  50. define_native_function("sin", sin, 1, attr);
  51. define_native_function("cos", cos, 1, attr);
  52. define_native_function("tan", tan, 1, attr);
  53. define_native_function("pow", pow, 2, attr);
  54. define_native_function("exp", exp, 1, attr);
  55. define_native_function("expm1", expm1, 1, attr);
  56. define_native_function("sign", sign, 1, attr);
  57. define_native_function("clz32", clz32, 1, attr);
  58. define_property("E", Value(M_E), 0);
  59. define_property("LN2", Value(M_LN2), 0);
  60. define_property("LN10", Value(M_LN10), 0);
  61. define_property("LOG2E", Value(log2(M_E)), 0);
  62. define_property("LOG10E", Value(log10(M_E)), 0);
  63. define_property("PI", Value(M_PI), 0);
  64. define_property("SQRT1_2", Value(M_SQRT1_2), 0);
  65. define_property("SQRT2", Value(M_SQRT2), 0);
  66. }
  67. MathObject::~MathObject()
  68. {
  69. }
  70. JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
  71. {
  72. auto number = interpreter.argument(0).to_number(interpreter);
  73. if (interpreter.exception())
  74. return {};
  75. if (number.is_nan())
  76. return js_nan();
  77. return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
  78. }
  79. Value MathObject::random(Interpreter&, GlobalObject&)
  80. {
  81. #ifdef __serenity__
  82. double r = (double)arc4random() / (double)UINT32_MAX;
  83. #else
  84. double r = (double)rand() / (double)RAND_MAX;
  85. #endif
  86. return Value(r);
  87. }
  88. JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
  89. {
  90. auto number = interpreter.argument(0).to_number(interpreter);
  91. if (interpreter.exception())
  92. return {};
  93. if (number.is_nan())
  94. return js_nan();
  95. return Value(::sqrt(number.as_double()));
  96. }
  97. JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
  98. {
  99. auto number = interpreter.argument(0).to_number(interpreter);
  100. if (interpreter.exception())
  101. return {};
  102. if (number.is_nan())
  103. return js_nan();
  104. return Value(::floor(number.as_double()));
  105. }
  106. JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
  107. {
  108. auto number = interpreter.argument(0).to_number(interpreter);
  109. if (interpreter.exception())
  110. return {};
  111. if (number.is_nan())
  112. return js_nan();
  113. return Value(::ceil(number.as_double()));
  114. }
  115. JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
  116. {
  117. auto number = interpreter.argument(0).to_number(interpreter);
  118. if (interpreter.exception())
  119. return {};
  120. if (number.is_nan())
  121. return js_nan();
  122. return Value(::round(number.as_double()));
  123. }
  124. JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
  125. {
  126. if (!interpreter.argument_count())
  127. return js_negative_infinity();
  128. auto max = interpreter.argument(0).to_number(interpreter);
  129. if (interpreter.exception())
  130. return {};
  131. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  132. auto cur = interpreter.argument(i).to_number(interpreter);
  133. if (interpreter.exception())
  134. return {};
  135. max = Value(cur.as_double() > max.as_double() ? cur : max);
  136. }
  137. return max;
  138. }
  139. JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
  140. {
  141. if (!interpreter.argument_count())
  142. return js_infinity();
  143. auto min = interpreter.argument(0).to_number(interpreter);
  144. if (interpreter.exception())
  145. return {};
  146. for (size_t i = 1; i < interpreter.argument_count(); ++i) {
  147. auto cur = interpreter.argument(i).to_number(interpreter);
  148. if (interpreter.exception())
  149. return {};
  150. min = Value(cur.as_double() < min.as_double() ? cur : min);
  151. }
  152. return min;
  153. }
  154. JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
  155. {
  156. auto number = interpreter.argument(0).to_number(interpreter);
  157. if (interpreter.exception())
  158. return {};
  159. if (number.is_nan())
  160. return js_nan();
  161. if (number.as_double() < 0)
  162. return MathObject::ceil(interpreter, global_object);
  163. return MathObject::floor(interpreter, global_object);
  164. }
  165. JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
  166. {
  167. auto number = interpreter.argument(0).to_number(interpreter);
  168. if (interpreter.exception())
  169. return {};
  170. if (number.is_nan())
  171. return js_nan();
  172. return Value(::sin(number.as_double()));
  173. }
  174. JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
  175. {
  176. auto number = interpreter.argument(0).to_number(interpreter);
  177. if (interpreter.exception())
  178. return {};
  179. if (number.is_nan())
  180. return js_nan();
  181. return Value(::cos(number.as_double()));
  182. }
  183. JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
  184. {
  185. auto number = interpreter.argument(0).to_number(interpreter);
  186. if (interpreter.exception())
  187. return {};
  188. if (number.is_nan())
  189. return js_nan();
  190. return Value(::tan(number.as_double()));
  191. }
  192. JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
  193. {
  194. return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
  195. }
  196. JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
  197. {
  198. auto number = interpreter.argument(0).to_number(interpreter);
  199. if (interpreter.exception())
  200. return {};
  201. if (number.is_nan())
  202. return js_nan();
  203. return Value(::pow(M_E, number.as_double()));
  204. }
  205. JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
  206. {
  207. auto number = interpreter.argument(0).to_number(interpreter);
  208. if (interpreter.exception())
  209. return {};
  210. if (number.is_nan())
  211. return js_nan();
  212. return Value(::pow(M_E, number.as_double()) - 1);
  213. }
  214. JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
  215. {
  216. auto number = interpreter.argument(0).to_number(interpreter);
  217. if (interpreter.exception())
  218. return {};
  219. if (number.is_positive_zero())
  220. return Value(0);
  221. if (number.is_negative_zero())
  222. return Value(-0.0);
  223. if (number.as_double() > 0)
  224. return Value(1);
  225. if (number.as_double() < 0)
  226. return Value(-1);
  227. return js_nan();
  228. }
  229. JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
  230. {
  231. auto number = interpreter.argument(0).to_number(interpreter);
  232. if (interpreter.exception())
  233. return {};
  234. if (!number.is_finite_number() || (unsigned)number.as_double() == 0)
  235. return Value(32);
  236. return Value(__builtin_clz((unsigned)number.as_double()));
  237. }
  238. }