Region.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /*
  2. * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
  3. *
  4. * SPDX-License-Identifier: BSD-2-Clause
  5. */
  6. #include <AK/Memory.h>
  7. #include <AK/StringView.h>
  8. #include <Kernel/Debug.h>
  9. #include <Kernel/FileSystem/Inode.h>
  10. #include <Kernel/Panic.h>
  11. #include <Kernel/Process.h>
  12. #include <Kernel/Thread.h>
  13. #include <Kernel/VM/AnonymousVMObject.h>
  14. #include <Kernel/VM/MemoryManager.h>
  15. #include <Kernel/VM/PageDirectory.h>
  16. #include <Kernel/VM/Region.h>
  17. #include <Kernel/VM/SharedInodeVMObject.h>
  18. namespace Kernel {
  19. Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  20. : PurgeablePageRanges(vmobject)
  21. , m_range(range)
  22. , m_offset_in_vmobject(offset_in_vmobject)
  23. , m_vmobject(move(vmobject))
  24. , m_name(move(name))
  25. , m_access(access | ((access & 0x7) << 4))
  26. , m_shared(shared)
  27. , m_cacheable(cacheable == Cacheable::Yes)
  28. {
  29. VERIFY(m_range.base().is_page_aligned());
  30. VERIFY(m_range.size());
  31. VERIFY((m_range.size() % PAGE_SIZE) == 0);
  32. m_vmobject->ref_region();
  33. register_purgeable_page_ranges();
  34. MM.register_region(*this);
  35. }
  36. Region::~Region()
  37. {
  38. m_vmobject->unref_region();
  39. unregister_purgeable_page_ranges();
  40. // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
  41. // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
  42. // find the address<->region mappings in an invalid state there.
  43. ScopedSpinLock lock(s_mm_lock);
  44. if (m_page_directory) {
  45. unmap(ShouldDeallocateVirtualMemoryRange::Yes);
  46. VERIFY(!m_page_directory);
  47. }
  48. MM.unregister_region(*this);
  49. }
  50. void Region::register_purgeable_page_ranges()
  51. {
  52. if (m_vmobject->is_anonymous()) {
  53. auto& vmobject = static_cast<AnonymousVMObject&>(*m_vmobject);
  54. vmobject.register_purgeable_page_ranges(*this);
  55. }
  56. }
  57. void Region::unregister_purgeable_page_ranges()
  58. {
  59. if (m_vmobject->is_anonymous()) {
  60. auto& vmobject = static_cast<AnonymousVMObject&>(*m_vmobject);
  61. vmobject.unregister_purgeable_page_ranges(*this);
  62. }
  63. }
  64. OwnPtr<Region> Region::clone(Process& new_owner)
  65. {
  66. VERIFY(Process::current());
  67. ScopedSpinLock lock(s_mm_lock);
  68. if (m_shared) {
  69. VERIFY(!m_stack);
  70. if (vmobject().is_inode())
  71. VERIFY(vmobject().is_shared_inode());
  72. // Create a new region backed by the same VMObject.
  73. auto region = Region::try_create_user_accessible(
  74. &new_owner, m_range, m_vmobject, m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  75. if (!region) {
  76. dbgln("Region::clone: Unable to allocate new Region");
  77. return nullptr;
  78. }
  79. if (m_vmobject->is_anonymous())
  80. region->copy_purgeable_page_ranges(*this);
  81. region->set_mmap(m_mmap);
  82. region->set_shared(m_shared);
  83. region->set_syscall_region(is_syscall_region());
  84. return region;
  85. }
  86. if (vmobject().is_inode())
  87. VERIFY(vmobject().is_private_inode());
  88. auto vmobject_clone = vmobject().try_clone();
  89. if (!vmobject_clone)
  90. return {};
  91. // Set up a COW region. The parent (this) region becomes COW as well!
  92. remap();
  93. auto clone_region = Region::try_create_user_accessible(
  94. &new_owner, m_range, vmobject_clone.release_nonnull(), m_offset_in_vmobject, m_name ? m_name->try_clone() : OwnPtr<KString> {}, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
  95. if (!clone_region) {
  96. dbgln("Region::clone: Unable to allocate new Region for COW");
  97. return nullptr;
  98. }
  99. if (m_vmobject->is_anonymous())
  100. clone_region->copy_purgeable_page_ranges(*this);
  101. if (m_stack) {
  102. VERIFY(is_readable());
  103. VERIFY(is_writable());
  104. VERIFY(vmobject().is_anonymous());
  105. clone_region->set_stack(true);
  106. }
  107. clone_region->set_syscall_region(is_syscall_region());
  108. clone_region->set_mmap(m_mmap);
  109. return clone_region;
  110. }
  111. void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
  112. {
  113. if (m_vmobject.ptr() == obj.ptr())
  114. return;
  115. unregister_purgeable_page_ranges();
  116. m_vmobject->unref_region();
  117. m_vmobject = move(obj);
  118. m_vmobject->ref_region();
  119. register_purgeable_page_ranges();
  120. }
  121. bool Region::is_volatile(VirtualAddress vaddr, size_t size) const
  122. {
  123. if (!m_vmobject->is_anonymous())
  124. return false;
  125. auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
  126. size_t first_page_index = page_round_down(offset_in_vmobject) / PAGE_SIZE;
  127. size_t last_page_index = page_round_up(offset_in_vmobject + size) / PAGE_SIZE;
  128. return is_volatile_range({ first_page_index, last_page_index - first_page_index });
  129. }
  130. auto Region::set_volatile(VirtualAddress vaddr, size_t size, bool is_volatile, bool& was_purged) -> SetVolatileError
  131. {
  132. was_purged = false;
  133. if (!m_vmobject->is_anonymous())
  134. return SetVolatileError::NotPurgeable;
  135. auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
  136. if (is_volatile) {
  137. // If marking pages as volatile, be prudent by not marking
  138. // partial pages volatile to prevent potentially non-volatile
  139. // data to be discarded. So rund up the first page and round
  140. // down the last page.
  141. size_t first_page_index = page_round_up(offset_in_vmobject) / PAGE_SIZE;
  142. size_t last_page_index = page_round_down(offset_in_vmobject + size) / PAGE_SIZE;
  143. if (first_page_index != last_page_index)
  144. add_volatile_range({ first_page_index, last_page_index - first_page_index });
  145. } else {
  146. // If marking pages as non-volatile, round down the first page
  147. // and round up the last page to make sure the beginning and
  148. // end of the range doesn't inadvertedly get discarded.
  149. size_t first_page_index = page_round_down(offset_in_vmobject) / PAGE_SIZE;
  150. size_t last_page_index = page_round_up(offset_in_vmobject + size) / PAGE_SIZE;
  151. switch (remove_volatile_range({ first_page_index, last_page_index - first_page_index }, was_purged)) {
  152. case PurgeablePageRanges::RemoveVolatileError::Success:
  153. case PurgeablePageRanges::RemoveVolatileError::SuccessNoChange:
  154. break;
  155. case PurgeablePageRanges::RemoveVolatileError::OutOfMemory:
  156. return SetVolatileError::OutOfMemory;
  157. }
  158. }
  159. return SetVolatileError::Success;
  160. }
  161. size_t Region::cow_pages() const
  162. {
  163. if (!vmobject().is_anonymous())
  164. return 0;
  165. return static_cast<const AnonymousVMObject&>(vmobject()).cow_pages();
  166. }
  167. size_t Region::amount_dirty() const
  168. {
  169. if (!vmobject().is_inode())
  170. return amount_resident();
  171. return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
  172. }
  173. size_t Region::amount_resident() const
  174. {
  175. size_t bytes = 0;
  176. for (size_t i = 0; i < page_count(); ++i) {
  177. auto* page = physical_page(i);
  178. if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  179. bytes += PAGE_SIZE;
  180. }
  181. return bytes;
  182. }
  183. size_t Region::amount_shared() const
  184. {
  185. size_t bytes = 0;
  186. for (size_t i = 0; i < page_count(); ++i) {
  187. auto* page = physical_page(i);
  188. if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
  189. bytes += PAGE_SIZE;
  190. }
  191. return bytes;
  192. }
  193. OwnPtr<Region> Region::try_create_user_accessible(Process* owner, const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable, bool shared)
  194. {
  195. auto region = adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
  196. if (!region)
  197. return nullptr;
  198. if (owner)
  199. region->m_owner = owner->make_weak_ptr();
  200. return region;
  201. }
  202. OwnPtr<Region> Region::try_create_kernel_only(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, OwnPtr<KString> name, Region::Access access, Cacheable cacheable)
  203. {
  204. return adopt_own_if_nonnull(new (nothrow) Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
  205. }
  206. bool Region::should_cow(size_t page_index) const
  207. {
  208. if (!vmobject().is_anonymous())
  209. return false;
  210. return static_cast<const AnonymousVMObject&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
  211. }
  212. void Region::set_should_cow(size_t page_index, bool cow)
  213. {
  214. VERIFY(!m_shared);
  215. if (vmobject().is_anonymous())
  216. static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
  217. }
  218. bool Region::map_individual_page_impl(size_t page_index)
  219. {
  220. VERIFY(m_page_directory->get_lock().own_lock());
  221. auto page_vaddr = vaddr_from_page_index(page_index);
  222. bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
  223. if (is_mmap() && !user_allowed) {
  224. PANIC("About to map mmap'ed page at a kernel address");
  225. }
  226. auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
  227. if (!pte)
  228. return false;
  229. auto* page = physical_page(page_index);
  230. if (!page || (!is_readable() && !is_writable())) {
  231. pte->clear();
  232. } else {
  233. pte->set_cache_disabled(!m_cacheable);
  234. pte->set_physical_page_base(page->paddr().get());
  235. pte->set_present(true);
  236. if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
  237. pte->set_writable(false);
  238. else
  239. pte->set_writable(is_writable());
  240. if (Processor::current().has_feature(CPUFeature::NX))
  241. pte->set_execute_disabled(!is_executable());
  242. pte->set_user_allowed(user_allowed);
  243. }
  244. return true;
  245. }
  246. bool Region::do_remap_vmobject_page_range(size_t page_index, size_t page_count)
  247. {
  248. bool success = true;
  249. VERIFY(s_mm_lock.own_lock());
  250. if (!m_page_directory)
  251. return success; // not an error, region may have not yet mapped it
  252. if (!translate_vmobject_page_range(page_index, page_count))
  253. return success; // not an error, region doesn't map this page range
  254. ScopedSpinLock page_lock(m_page_directory->get_lock());
  255. size_t index = page_index;
  256. while (index < page_index + page_count) {
  257. if (!map_individual_page_impl(index)) {
  258. success = false;
  259. break;
  260. }
  261. index++;
  262. }
  263. if (index > page_index)
  264. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index), index - page_index);
  265. return success;
  266. }
  267. bool Region::remap_vmobject_page_range(size_t page_index, size_t page_count)
  268. {
  269. bool success = true;
  270. ScopedSpinLock lock(s_mm_lock);
  271. auto& vmobject = this->vmobject();
  272. if (vmobject.is_shared_by_multiple_regions()) {
  273. vmobject.for_each_region([&](auto& region) {
  274. if (!region.do_remap_vmobject_page_range(page_index, page_count))
  275. success = false;
  276. });
  277. } else {
  278. if (!do_remap_vmobject_page_range(page_index, page_count))
  279. success = false;
  280. }
  281. return success;
  282. }
  283. bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
  284. {
  285. ScopedSpinLock lock(s_mm_lock);
  286. if (!m_page_directory)
  287. return true; // not an error, region may have not yet mapped it
  288. if (!translate_vmobject_page(page_index))
  289. return true; // not an error, region doesn't map this page
  290. ScopedSpinLock page_lock(m_page_directory->get_lock());
  291. VERIFY(physical_page(page_index));
  292. bool success = map_individual_page_impl(page_index);
  293. if (with_flush)
  294. MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
  295. return success;
  296. }
  297. bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
  298. {
  299. bool success = true;
  300. ScopedSpinLock lock(s_mm_lock);
  301. auto& vmobject = this->vmobject();
  302. if (vmobject.is_shared_by_multiple_regions()) {
  303. vmobject.for_each_region([&](auto& region) {
  304. if (!region.do_remap_vmobject_page(page_index, with_flush))
  305. success = false;
  306. });
  307. } else {
  308. if (!do_remap_vmobject_page(page_index, with_flush))
  309. success = false;
  310. }
  311. return success;
  312. }
  313. void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
  314. {
  315. ScopedSpinLock lock(s_mm_lock);
  316. if (!m_page_directory)
  317. return;
  318. ScopedSpinLock page_lock(m_page_directory->get_lock());
  319. size_t count = page_count();
  320. for (size_t i = 0; i < count; ++i) {
  321. auto vaddr = vaddr_from_page_index(i);
  322. MM.release_pte(*m_page_directory, vaddr, i == count - 1);
  323. }
  324. MM.flush_tlb(m_page_directory, vaddr(), page_count());
  325. if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes) {
  326. if (m_page_directory->range_allocator().contains(range()))
  327. m_page_directory->range_allocator().deallocate(range());
  328. else
  329. m_page_directory->identity_range_allocator().deallocate(range());
  330. }
  331. m_page_directory = nullptr;
  332. }
  333. void Region::set_page_directory(PageDirectory& page_directory)
  334. {
  335. VERIFY(!m_page_directory || m_page_directory == &page_directory);
  336. VERIFY(s_mm_lock.own_lock());
  337. m_page_directory = page_directory;
  338. }
  339. bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
  340. {
  341. ScopedSpinLock lock(s_mm_lock);
  342. ScopedSpinLock page_lock(page_directory.get_lock());
  343. // FIXME: Find a better place for this sanity check(?)
  344. if (is_user() && !is_shared()) {
  345. VERIFY(!vmobject().is_shared_inode());
  346. }
  347. set_page_directory(page_directory);
  348. size_t page_index = 0;
  349. while (page_index < page_count()) {
  350. if (!map_individual_page_impl(page_index))
  351. break;
  352. ++page_index;
  353. }
  354. if (page_index > 0) {
  355. if (should_flush_tlb == ShouldFlushTLB::Yes)
  356. MM.flush_tlb(m_page_directory, vaddr(), page_index);
  357. return page_index == page_count();
  358. }
  359. return false;
  360. }
  361. void Region::remap()
  362. {
  363. VERIFY(m_page_directory);
  364. map(*m_page_directory);
  365. }
  366. PageFaultResponse Region::handle_fault(const PageFault& fault, ScopedSpinLock<RecursiveSpinLock>& mm_lock)
  367. {
  368. auto page_index_in_region = page_index_from_address(fault.vaddr());
  369. if (fault.type() == PageFault::Type::PageNotPresent) {
  370. if (fault.is_read() && !is_readable()) {
  371. dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
  372. return PageFaultResponse::ShouldCrash;
  373. }
  374. if (fault.is_write() && !is_writable()) {
  375. dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  376. return PageFaultResponse::ShouldCrash;
  377. }
  378. if (vmobject().is_inode()) {
  379. dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
  380. return handle_inode_fault(page_index_in_region, mm_lock);
  381. }
  382. auto& page_slot = physical_page_slot(page_index_in_region);
  383. if (page_slot->is_lazy_committed_page()) {
  384. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  385. VERIFY(m_vmobject->is_anonymous());
  386. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({}, page_index_in_vmobject);
  387. remap_vmobject_page(page_index_in_vmobject);
  388. return PageFaultResponse::Continue;
  389. }
  390. #ifdef MAP_SHARED_ZERO_PAGE_LAZILY
  391. if (fault.is_read()) {
  392. page_slot = MM.shared_zero_page();
  393. remap_vmobject_page(translate_to_vmobject_page(page_index_in_region));
  394. return PageFaultResponse::Continue;
  395. }
  396. return handle_zero_fault(page_index_in_region, mm_lock);
  397. #else
  398. dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
  399. return PageFaultResponse::ShouldCrash;
  400. #endif
  401. }
  402. VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
  403. if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
  404. dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  405. auto* phys_page = physical_page(page_index_in_region);
  406. if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
  407. dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  408. return handle_zero_fault(page_index_in_region, mm_lock);
  409. }
  410. return handle_cow_fault(page_index_in_region);
  411. }
  412. dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
  413. return PageFaultResponse::ShouldCrash;
  414. }
  415. PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region, ScopedSpinLock<RecursiveSpinLock>& mm_lock)
  416. {
  417. VERIFY_INTERRUPTS_DISABLED();
  418. VERIFY(vmobject().is_anonymous());
  419. bool can_lock = Thread::current() && !g_scheduler_lock.own_lock();
  420. if (can_lock) {
  421. // TODO: This seems rather weird. If we don't have a current thread
  422. // then we're in the Kernel in early initialization still. So we
  423. // can't actually wait on the paging lock. And if we currently
  424. // own the scheduler lock and we trigger zero faults, we also
  425. // can't really wait. But do we actually need to wait here?
  426. mm_lock.unlock();
  427. VERIFY(!s_mm_lock.own_lock());
  428. vmobject().m_paging_lock.lock();
  429. mm_lock.lock();
  430. }
  431. ScopeGuard guard([&]() {
  432. if (can_lock)
  433. vmobject().m_paging_lock.unlock();
  434. });
  435. auto& page_slot = physical_page_slot(page_index_in_region);
  436. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  437. if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
  438. dbgln_if(PAGE_FAULT_DEBUG, "MM: zero_page() but page already present. Fine with me!");
  439. if (!remap_vmobject_page(page_index_in_vmobject))
  440. return PageFaultResponse::OutOfMemory;
  441. return PageFaultResponse::Continue;
  442. }
  443. auto current_thread = Thread::current();
  444. if (current_thread != nullptr)
  445. current_thread->did_zero_fault();
  446. if (page_slot->is_lazy_committed_page()) {
  447. VERIFY(m_vmobject->is_anonymous());
  448. page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page({}, page_index_in_vmobject);
  449. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
  450. } else {
  451. page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
  452. if (page_slot.is_null()) {
  453. dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
  454. return PageFaultResponse::OutOfMemory;
  455. }
  456. dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
  457. }
  458. if (!remap_vmobject_page(page_index_in_vmobject)) {
  459. dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
  460. return PageFaultResponse::OutOfMemory;
  461. }
  462. return PageFaultResponse::Continue;
  463. }
  464. PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
  465. {
  466. VERIFY_INTERRUPTS_DISABLED();
  467. auto current_thread = Thread::current();
  468. if (current_thread)
  469. current_thread->did_cow_fault();
  470. if (!vmobject().is_anonymous())
  471. return PageFaultResponse::ShouldCrash;
  472. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  473. auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
  474. if (!remap_vmobject_page(page_index_in_vmobject))
  475. return PageFaultResponse::OutOfMemory;
  476. return response;
  477. }
  478. PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region, ScopedSpinLock<RecursiveSpinLock>& mm_lock)
  479. {
  480. VERIFY_INTERRUPTS_DISABLED();
  481. VERIFY(vmobject().is_inode());
  482. mm_lock.unlock();
  483. VERIFY(!s_mm_lock.own_lock());
  484. VERIFY(!g_scheduler_lock.own_lock());
  485. MutexLocker locker(vmobject().m_paging_lock);
  486. mm_lock.lock();
  487. VERIFY_INTERRUPTS_DISABLED();
  488. auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
  489. auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
  490. auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
  491. dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
  492. if (!vmobject_physical_page_entry.is_null()) {
  493. dbgln_if(PAGE_FAULT_DEBUG, "MM: page_in_from_inode() but page already present. Fine with me!");
  494. if (!remap_vmobject_page(page_index_in_vmobject))
  495. return PageFaultResponse::OutOfMemory;
  496. return PageFaultResponse::Continue;
  497. }
  498. auto current_thread = Thread::current();
  499. if (current_thread)
  500. current_thread->did_inode_fault();
  501. u8 page_buffer[PAGE_SIZE];
  502. auto& inode = inode_vmobject.inode();
  503. // Reading the page may block, so release the MM lock temporarily
  504. mm_lock.unlock();
  505. KResultOr<size_t> result(KSuccess);
  506. {
  507. ScopedLockRelease release_paging_lock(vmobject().m_paging_lock);
  508. auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
  509. result = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
  510. }
  511. mm_lock.lock();
  512. if (result.is_error()) {
  513. dmesgln("MM: handle_inode_fault had error ({}) while reading!", result.error());
  514. return PageFaultResponse::ShouldCrash;
  515. }
  516. auto nread = result.value();
  517. if (nread < PAGE_SIZE) {
  518. // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
  519. memset(page_buffer + nread, 0, PAGE_SIZE - nread);
  520. }
  521. vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
  522. if (vmobject_physical_page_entry.is_null()) {
  523. dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
  524. return PageFaultResponse::OutOfMemory;
  525. }
  526. u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
  527. {
  528. void* fault_at;
  529. if (!safe_memcpy(dest_ptr, page_buffer, PAGE_SIZE, fault_at)) {
  530. if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
  531. dbgln(" >> inode fault: error copying data to {}/{}, failed at {}",
  532. vmobject_physical_page_entry->paddr(),
  533. VirtualAddress(dest_ptr),
  534. VirtualAddress(fault_at));
  535. else
  536. VERIFY_NOT_REACHED();
  537. }
  538. }
  539. MM.unquickmap_page();
  540. remap_vmobject_page(page_index_in_vmobject);
  541. return PageFaultResponse::Continue;
  542. }
  543. RefPtr<Process> Region::get_owner()
  544. {
  545. return m_owner.strong_ref();
  546. }
  547. }